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Abstract: 
Onboard accelerometer allows for remote monitoring of animal movement and posture, enabling 
researchers to infer behaviours. Data scarcity is still a problem in ecology, even with deep 
learning's automated analytical capabilities. To categorise behaviours using acceleration data of 
critically endangered hawksbill sea turtles (Eretmochelys imbricata), we investigated transfer 
learning. In order to tackle a similar problem, transfer learning leverages a model that was trained 
on one task from a big dataset. We used this technique to detect hawksbill behaviours including 
swimming, resting, and eating by adapting a model trained on green turtles (Chelonia mydas). 
Additionally, we contrasted this with a model that was developed using data on human activities. 
According to the findings, transfer learning from the human and emerald turtle databases improved 
the F1-score by 4% and 8%, respectively. Through the application of knowledge transfer, 
researchers may use deep understanding to increase the usage of acceleration sensors for wildlife 
observation by tailoring current models for the sample animals. 
Keywords: Accelerometer, Behavioral classification, Bio-logging, Neural networks, Machine 
Learning, Animal behavior 
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1. Introduction 
Studying animals in their natural environments via behaviour monitoring is a non-invasive 
approach that yields important information about their ecology and health. By means of 
behavioural analysis, scientists may get a deeper comprehension of how animals engage with their 
surroundings and clarify important facets of their survival strategies, energy tactics, and 
reproductive success (McHuron et al., 2018; Sansom et al., 2009; Zhang et al., 2004). 
A crucial method for assessing how well a species has adapted to harsh environments (Abernathy 
et al., 2019; Sergio et al., 2018) and rapid environmental change (Beever et al., 2017; Buchholz et 
al., 2019) is behaviour monitoring. Additionally, it makes it possible to quantify extraordinary 
physiological abilities like deep breath-hold diving and long-distance migration, which contributes 
to a more thorough comprehension of the mechanisms underlying these behaviours (Boel et al., 
2014; Fossette et al., 2010; Pedersen et al., 2018). 
Because it allows for ongoing observation of animals in their natural environments, bio-logging 
has become a useful technique for researching animal behaviour. It entails the installation of 
onboard sensors that gather detailed information on the physiology, behaviour, and environmental 
circumstances of animals. Among these sensors, the accelerometer works best for capturing the 
posture and motion of animals. It functions as a piezoelectric sensor, converting forces acting on 
a mass into voltage signals that resemble waves. These forces include the force of gravity and the 
force of inertia brought on by the animal's motion and posture, respectively (Brown et al., 2013). 
Researchers can detect behaviours like locomotion, eating, and inactivity that are typified by 
certain postures and motions by aligning three accelerometers orthogonally (Shepard et al., 2008). 
One of the main challenges in acceleration-based behaviour detection is automating data 
processing in order to make it easier to analyse big time-series datasets. In order to automatically 
analyse acceleration data and identify the behaviour of wild animals, deep learning has recently 
shown promise (Aulsebrook et al., 2024; Jeantet et al., 2021; Otsuka et al., 2024; Zhang et al., 
2019a). Neural networks, another name for deep learning algorithms, are computer models that 
process input in numerous layers and carry out both linear and non-linear changes. Their ability to 
automatically identify intricate, highly discriminative patterns and characteristics in the data 
allows them to categorise acceleration signals into different behavioural groups. Specifically, deep 
learning has led the way in improving human activity recognition (HAR) and behaviour 
identification using accelerometers in livestock monitoring (Bao and Xie, 2022; Kumar et al., 
2023). Many research have created deep learning models for livestock with the goal of tracking 
animal welfare and production. These models can identify lameness in cattle, sheep, and pigs as 
well as track behaviours like eating, drinking, walking, and resting (Kleanthous et al., 2022b; Mao 
et al., 2023). Accelerometers are widely used to monitor human physical activity, including 
walking, running, standing, and sitting. They are also used to detect falls, which is particularly 
crucial when caring for elderly individuals (Choi et al., 2022; Nunavath et al., 2021; Ramanujam 
et al., 2021). 
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In contrast, there has been little research done on creating new techniques to make deep learning 
easier to use or improve its effectiveness in the subject of ecology. The added difficulties in 
obtaining large, accountable, and precisely labelled datasets for environmental study may be the 
reason for the sparse use of deep learning algorithms in ecological as opposed to cattle tracking or 
HAR. In overall, deep learning algorithms are big models with several functional layers that follow 
one another. The model is tailored to the particular job by optimising, or fine-tuning, the weights—
real-valued numbers—used in every operation throughout the development phase utilising labelled 
data.The capacity of the model to distinguish features improves with the number of layers, but this 
also requires a bigger labelled dataset for efficient training (He et al., 2016). Studying wild animals, 
on the other hand, poses difficulties for data collecting due to the need to reduce disruption, natural 
limitations, and restricted availability for threatened species, which leads to smaller datasets. 
The procedure is further complicated by having to arrange for contemporaneous observations in 
order to create a labelled information set, which results in significantly fewer data sets for training. 
Overfitting is a major danger of utilising information that is that is insufficient for deep learning 
model development. When the body masses of the model are too closely matched to the particular 
instances in the training set, this is known as overfitting. As a result, the model does well on the 
experimental information but badly on the training information. Transfer methods of learning have 
been used in a variety of environmental tasks, such as bioacoustics, trapping with cameras, drone 
enquiries, and animals estimation of poses from video recordings (the last three falling according 
to computer vision) to address the lack of data in other ecological fields (Dufourq et al., 2022; 
Grey et al., 2019; Liao et al., 2023; Lu et al., 2021; Schneider et al., 2018). A model that has been 
trained on one task may be modified and improved for an alternate but comparable task using the 
transfer learnt approach. This approach reduces the possibility of overfitting on smaller, more 
constrained datasets while allowing the usage of deep learning models with several layers that 
have already been pre-trained on big datasets. In bioacoustics, Batist et al. (2024) used a pre-
trained model trained on ImageNet to identify sounds from black-and-white ruffed lemurs (Varecia 
variegata) using spectrograms. The model was created for classifying objects from colour images. 
Although the goals and datasets are different (classifying spectroscopy images vs photos), neural 
networks that were previously trained on the data set for images may pick up abstract designs 
which may be applied to the spectrometer information. Although transfer learning has long been 
used to study human behaviour (Cook et al., 2013; Hernandez et al., 2020) and more recently in 
acceleration-based behaviour identification studies of livestock (Bloch et al., 2023; Kleanthous et 
al., 2022a), it has not yet been used to study wild animals. 
Marine species are particularly affected by the lack of data needed to train deep learning algorithms 
in ecology. In this work, we investigated the application of transfer learning to the study of 
Eretmochelys imbricata, or hawksbill sea turtles. The Hawksbill and Kemp's ridley turtles 
(Lepidochelys kempii) are the two most endangered of the six sea turtle species, both of which are 
listed as critically endangered (IUCN, 2024). Hawksbill turtles and young green turtles (Chelonia 
mydas) are found in the Caribbean island of Martinique (Lelong et al., 2024; Nivierè et al., 
2018).Understanding endangered species' behaviours is crucial for understanding their adaptation 
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to changing environments and anthropogenic pressures (e.g., coral bleaching, eutrophication; Li 
and Reidenbach, 2014; Hayes et al., 2017; Louis-Jean et al., 2009; Siegwalt et al., 222).In order to 
better understand sea turtles' energy strategies, accelerometers are a useful tool for observing 
behaviours including swimming, resting, breathing, and eating (Fossette et al., 2012; Jeantet et al., 
2020a).Significant monitoring is being done on Martinique's green turtle population (Bonola et al., 
2019; Charrier et al., 2022; Siegwalt et al., 2022, 2020), and research has been done using 
accelerometers to automatically track their movements (Jeantet et al., 2020a, 2021).On the other 
hand, hawksbill turtle population research is more difficult since individuals are harder to locate 
than green turtles, making it challenging to outfit them with bio-loggers.Additionally, there aren't 
many research that utilise accelerometers to study hawksbill turtles; as far as we know, just two 
studies have looked at using this technology to examine the behaviour of these turtles (Jeantet et 
al., 2018; Okuyama et al., 2012).As a result, there is a significant dearth of information and 
research on this species, and the difficulties in gathering data make it challenging to use deep 
learning algorithms to examine their behaviours.This work sought to overcome the prevalent 
problem of limited datasets in ecological research when training deep learning algorithms by 
examining the use of transfer learning for the automated identification of behaviours in endangered 
species using accelerometer data.We concentrated on the hawksbill sea turtle, a species that is 
extremely difficult to monitor and for which there is little information and study.First, we 
investigated using a pre-trained model on the green turtle, a similarly related species whose 
postures and movement patterns are thought to resemble those of the hawksbill turtle while 
expressing behaviours of interest such breathing, swimming, eating, and resting.There is a trained 
model and dataset for this species that are accessible to the public.Second, we evaluated the 
viability of using transfer learning from a species that differs significantly from the hawksbill turtle 
in terms of morphology, since behavioural identification for this species should depend on distinct 
characteristics from those utilised for sea turtles.With little reliance between the species used in 
the pre-trained model and the species under study, this strategy allowed us to assess if the technique 
is species specific or applicable to a wider variety of species.Because data collecting is easier and 
there are many datasets and pre-trained models available, we concentrated on people for this.In 
order to provide a technique that can be used to a larger variety of species and enable the wider 
use of deep learning in the study of animal behaviour, this work is the first to investigate transfer 
learning for monitoring wild animals. 
 
2. MATERIALS AND TECHNIQUES 
2.1 The Hawksbill dataset 
This research complies with all institutional rules and legal requirements of the nations where it 
was conducted. The French Ministry for Ecology, Sustainable Development and Energy (permit 
no. 2013154-0037), which serves as an ethics committee in Martinique, and the "Conseil National 
de la Protection de la Nature" (http://www.avis-biodiversite.developpement-
durable.gouv.fr/bienvenue-sur-le-site-du-cnpn-et-du-cnb-a1.html) both approved the protocol. To 
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minimise animal disturbance, the fieldwork was conducted strictly in compliance with the 
Prefecture of Martinique's guidelines (authorisation no. 201710-0005). 
2.2 Information gathering 
From November 2022 to May 2023, fieldwork was carried out on Martinique, a Caribbean island 
in France, to gather the hawksbill turtle dataset. As detailed in Niviere et al. (2018) and ̀Jeantet et 
al. (2020a), six hawksbill turtles, Eretmochelys imbricata (Linnaeus 1766), that were free-ranging 
were manually captured, measured, and recognised. Over the course of two days, we fitted them 
with CATS (Customised Animal Tracking Solutions) devices, which included an automated 
release mechanism and four suction cups fastened to their carapace (Fig. 1; see Jeantet et al., 2020a, 
for details). Each CATS device had a pressure sensor, a tri-axial gyroscope, a tri-axial 
accelerometer, and a video recorder. The gadgets were set up to continually record pressure at 1 
Hz and acceleration and angular velocity (gyroscope) at a rate of 20 Hz. 

 
Figure 1: TurtleCam: A “Smart” Autonomous Underwater Vehicle for Investigating 
Behaviors and Habitats of Sea Turtles 
The video recorders were set up to start recording at 18:00 and stop at 06:00, respectively, for 
nighttime. It was thought that the maximum battery capacity would allow for 18 hours of video 
recording and 48 hours for the other sensors. 
2.3 Annotating videos and preparing data 
Using specially designed software called TurtleCap (https://github.com/Vadym-
Hadetskyi/TurtleCap), video recordings taken by the CATS devices were examined visually in 
order to find patterns. To the closest tenth of a second, the start and finish timings of every 
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behaviour that was seen were noted. The video recordings were labelled using six primary 
behavioural categories: breathing, feeding, gliding, resting, scratching, and swimming (Fig. 1). 
Any further behaviour that was seen was classified as Other. The behaviour of green turtles in 
earlier Martinique research was described using similar seven categories (for a detailed discussion 
of the behaviours, see Jeantet et al., 2020a). In order to visualise and verify the acceleration, 
gyroscope, and pressure data related to the relevant observed behaviours, R software (version 
3.5.3; http://www.R-project.org/) and the rblt package (https://CRAN.R-project.org/package=rblt) 
were used. 
The primary tasks of data preparation were eliminating the unlabelled night episodes for which 
there was no video footage and mapping the behaviour labels to the multi-sensor data. The 
gyroscopic and acceleration data were not pre-processed. The force information was analysed 
using a linear interpolation approach to boost the sampling frequency to 20 Hz. The variation 
among all of the data points was computed at 1 Hz. 
Six distinct hawksbill turtles provided 69.7 hours of multisensor recordings in total, with an 
average of 11.6 hours per person, a maximum of 17.8 hours, a minimum of 6.3 hours, and a 
standard deviation of 3.6 hours. With a total of 38.6 hours, feeding was the most common 
behaviour shown in the movies. Resting and swimming came in second and third, with 19.1 and 
7.9 hours, respectively (Table S1). Breathing took 2.2 hours, gliding took 1 hour, scratching took 
0.8 hours, and other took 0.1 hours. 
 
2.4 The pre-trained models' datasets 
2.4.1 Dataset of green turtles 
Similar to the hawksbill dataset, the green turtle dataset utilised in this research was gathered in 
Martinique between February 2018 and May 2019. Over the course of one or two days, the CATS 
devices were placed on thirteen green turtles, Chelonia mydas (Linnaeus 1758). The dataset has 
been thoroughly described in Jeantet et al. (2020a), is publicly accessible on the Dryad digital 
repository . 
The green turtle dataset, which was labelled with the same seven behaviours as the hawksbill 
dataset, included 68.6 hours of recordings from 13 individuals (mean 5.29 hours per individual, 
maximum 14.67 hours, minimum 0.96 hours, standard deviation 3.39 hours). With a total of 34.3 
hours, resting was the most common behaviour shown in the films. Swimming and breathing came 
in second and third, with 22.3 and 5.7 hours, respectively (Table S1). The other behaviors—gliding 
for 2.3 hours, feeding for 1.8 hours, scratching for 1.2 hours, and other for 1 hour—were shown in 
minority. 
 
2.4.2 Dataset of humans 
We also examined the possibility of transfer learning from other taxa, where data collecting is 
more practical, in order to gauge the importance of the species used for pre-training. Since it is far 
simpler to gather data from humans than from other animals, we concentrated on them, and as a 
consequence, there are many open-access datasets accessible. The Intensive Care Unit (ICU) HAR 
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dataset (Reyes-Ortiz et al., 2013), which is publically accessible and often utilised in the creation 
of deep learning models for HAR (Ramanujam et al., 2021; Zhang et al., 2022), was used in this 
instance. 
Thirty participants in the ICU HAR wore smartphones around their waists to capture 3D 
acceleration and 3D angular speed, which were recorded at 50 Hz. A total of almost 220 hours of 
labelled sequences were completed by each participant in six different activities (walking, walking 
upstairs, walking downstairs, sitting, standing, and lying) with durations varying from one to two 
minutes each (see Table S1 for the particular time available per activity). 
 
2.4.3 Deep learning model architecture 
We evaluated V-Net (Jeantet et al., 2021), a model that was first modified to recognise the 
underwater behaviours of green turtles in Martinique, in this transfer learning research. One benefit 
of the V-Net model is that it produces an output that is the same length as the input, enabling 
predictions to be made from the recorded data at each data point, or time step. Without the need 
for preprocessing procedures like segmentation, filtering, or the computation of descriptive 
variables, it can predict behaviours straight from raw accelerometer data (Jeantet et al., 2020a). 
Additionally, the V-Net model was created especially to deal with unbalanced and tiny datasets 
(Milletari et al., 2016). Beyond its use with Martinian green turtles, the model has shown promising 
results in detecting prey capture events in Antarctica's chinstrap penguins (Pygocelis antarctica) 
(Schoombie et al., 2024) and terrestrial behaviours in French Guiana's green turtles (Jeantet et al., 
2022). This data points to its capacity to generalise across situations and species. We evaluated U-
Net, a similarly comparable model with a similar architecture and extensive usage in human 
investigations (Meena and Sarawadekar, 2023; Zhang et al., 2019b), for the human dataset. 



Chelonian Conservation and Biology 
https://www.acgpublishing.com/ 

212 MESENCHYMAL STEM CELLS: A REGENERATIVE HOPE FOR ALZHEIMER'S PATIENTS 

 

 212 

 
Figure 2: The V-Net and U-Net architectures are shown. The V-Net was pre-trained on the 
dataset of green turtles, while the U-Net was pre-trained on the dataset of humans. (B) The 
transfer learning applications evaluated on the Hawksbill dataset, displaying the various 
frozen layer configurations for the model pretrained on the Green Turtle dataset and the 
orange-colored changed layer for the model pre-trained on the Human dataset. Two 
successive convolutional layers are shown by the black arrows, and one convolutional layer 
is represented by the blue arrows. The amount of features to be generated is represented by 
depth (depth=32), the quantity of input data by nb_desc, and the number of behaviours by 
nb_behaviors. The window size is represented by WS. 



Chelonian Conservation and Biology 
https://www.acgpublishing.com/ 

213 MESENCHYMAL STEM CELLS: A REGENERATIVE HOPE FOR ALZHEIMER'S PATIENTS 

 

 213 

Because convolution is their main function, V-Net and U-Net are models sometimes referred to as 
fully convolutional neural networks. Convolution is a mathematical process used in machine 
learning, specifically in convolutional neural networks, to identify and extract hierarchical features 
from input data, such as edges, textures, and patterns in signals or pictures. It creates a new signal 
that emphasises certain characteristics depending on the filter by sliding a filter across an input, 
multiplying the filter values by the signal values, and adding them at each location. The weights 
of the model are represented by the values of the filter used in the summations and multiplications. 
Based on the labelled data supplied to the model, the training phase of a neural network optimises 
these weights to allow precise identification of the behaviours of the species under study. 
A convolutional layer filters the incoming data using a predetermined number of filters. Every 
filter creates a feature map, which is a modified version of the input signal. Multiple convolutional 
layers arranged sequentially constitute a fully convolutional neural network (a schematic 
representation of the V-Net and U-Net architecture may be seen in Fig. 2). Behaviour 
categorisation is made possible by the sequential application of numerous filters, which allows for 
the extraction of different characteristics from the signal. 
Two encoder-decoder designs are V-Net and U-Net (Fig. 2). These models initially decrease the 
input's dimensionality by mapping it to a lower-dimensional space using a sequence of 
convolutional layers. Depending on the number of layers and filters in the encoder, this procedure 
creates a significant number of discriminative features. The decoder, the second component of the 
model, then combines these information to forecast the result. An output matrix of the same length 
as the input is the consequence of this. A convolutional layer with seven channels, representing 
each of the behavioural types, makes up the last layer. A matrix with a value for each behaviour at 
each data point is the result at this moment. The probability of each behaviour for each data point 
is then determined by running these seven values through a softmax function (Eqn 1). 

𝜎(𝑧௜) =
𝑒௭௜

∑ 𝑒௭௜௡
௝ୀଵ

    (1) 

where zi is the ith element of the array of size n, where n is the number of classes, and σ is the 
softmax. The softmax function may be seen as a probability distribution as it generates an array of 
non-negative values that add up to 1. The behaviour with the greatest probability is then chosen as 
the anticipated behaviour for each data point. The Supplementary Materials and Methods include 
a thorough explanation of the V-Net and U-Net topologies. 
 
2.4.4 Assessment of the models 
We evaluated the different models used in this work on a dataset different from the training set in 
order to assess their performance. With this method, we may evaluate how well the models predict 
data that is deemed unseen since it isn't utilised in model training. Training, validation, and testing 
sets were created from the three datasets previously mentioned. During the iterative training 
process, the training and validation sets are utilised concurrently, with the validation set being used 
to evaluate performance trends. The testing set, which replicates the circumstances in which the 
model will be used, is kept aside for the model's final analysis. According to Reyes-Ortiz et al. 
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(2013), the human dataset was first made available in two datasets, with 70% of the participants 
being randomly assigned to the training set and the remaining 30% to the test set. Thirty percent 
of the participants in the human training dataset were assigned at random to the validation dataset. 
Following the same distribution as in Jeantet et al. (2021), seven green turtles were utilised for 
training, three for validation, and three for testing. Three hawksbill turtles were chosen at random 
for the training dataset, two for testing, and one for validation. This method of data splitting was 
used consistently to every model that was evaluated. 
We used the testing dataset to assess the generalisability of the model. In order to do this, we 
separated each test subject's whole recording into windows that overlapped by 10%. After running 
the trained model over all windows, we put the predictions back together to recreate the signal. 
We created the confusion matrix and determined the global accuracy (Eqn 2), precision (Eqn 3), 
recall (Eqn 4), and F1-score (Eqn 5) based on the predictions and the manually confirmed labels: 

𝑔𝑙𝑜𝑏𝑎𝑙 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑁 + 𝐹𝑃
   (2) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
  (3) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
  (4) 

𝐹1 − 𝑆𝐶𝑂𝑅𝐸 =
2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
  (5) 

True positives (TP) and true negatives (TN) in these equations denote the total amount of 
behaviours that were properly detected, while false negatives (FN) and false positives (FP) denote 
the number of behaviours that were classified incorrectly. The F1-score is thought to be a more 
accurate indicator of the model's efficiency than global reliability for unbalanced datasets (Saito 
and Rehmsmeier, 2015). 
 
2.4.5 Learning transfer: The basics of transfer learning 
In order to minimise the discrepancy among the outputs and the annotated numbers, a neural 
network's weights are repeatedly modified as the model learns on labelled information during 
training. These weights are first produced at random and then tailored to the particular 
classification job. According to Ying (2019), overfitting occurs when these weights are excessively 
customised for the labelled dataset, which impairs generalisation and model performance on fresh 
data. This problem is especially common when there are a lot of weights in the model and a little 
training dataset. 
Using pre-trained models, transfer learning initialises model B using weights from model A. 
Usually, a greater amount of data is used to train a particular model on a task that is comparable 
with model B. Instead of using randomly initialised a weight, the weights from version A are used 
as the beginning point for design B in this procedure. The parameter values of the model A are 
then adjusted especially for the task B throughout the modelling stage using the smaller labelled 
dataset. In reality, the algorithm's early tiers are often "frozen," which means only the weights of 
of the layers that are closest to the output are adjusted throughout training. There are computational 
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benefits to freezing certain layers as fewer weights need to be optimised. Early layers of a model 
should be frozen since they capture broad data characteristics, but deeper layers gradually pick up 
abstractions from the data (Gu et al., 2018; Yosinski et al., 2015 preprint). since of this, the deeper 
layers need to be modified during transfers since they are more tailored to the particular task. 
 
2.5 Pre-training using datasets of humans and green turtles 
Model A is trained using the original dataset as the first stage in the transfer the learning process. 
We used the same settings as in Jeantet et al. (2021) to train the V-Net in order to get the trained 
model from the green turtle dataset. We employed the gyroscope (X, Y, Z), the raw acceleration 
(X, Y, Z), and the pressure difference as input. These were recorded at 20 Hz during a 40-second 
frame, producing a 7x800 matrix (Fig. 2). Utilising the Adam optimiser and a learning rate of 
0.0001, we train the V-Net on thirty runs with a group size of 32, using the Generalised Dice loss 
(Sudre et al., 2017). Using the coloured turtle information set, we achieved a worldwide precision 
of 97.2% and an F1-score of 81.1%. 
 
The green turtle's V-Net model has 15 convolutional layers, while Zhang et al.'s U-Net model 
(2019a,b) has 23 convolutional layers (Fig. 2, see Supplementary Materials and Methods for a 
thorough explanation of the V-Net and U-Net designs). The authors of the study used the ICU 
HAR dataset to test the model, segmenting the data using a fixed-length window of size 224. Using 
this method, we created a 6×224 matrix by training the U-Net on the ICU HAR dataset using raw 
acceleration (X, Y, Z) and gyroscope (X, Y, Z) data across a 224-length window. We trained the 
model for 50 epochs with 32 batches, using the Adam optimiser, cross-entropy loss, and 0.001 
learning rate, as per Zhang et al. (2019a,b). On the human dataset, we achieved a global accuracy 
of 95.7% and an F1-score of 85.6%. 
 
3. Using the Hawksbill dataset for transfer learning 
We investigated a number of situations in order to evaluate the advantages of using transfer 
learning to identify hawksbill turtle behaviour from a short dataset. First, we used the V-Net trained 
on green turtles to predict the behaviours of hawksbill turtles in order to ascertain if a new model 
is required for recognising their behaviour. In this instance, no transfer learning was used, and the 
framework was just used on the six people to evaluate the forecasts rather than being refined on 
the Hawksbill datasets. Second, we trained the V-Net using randomly initialised parameters on the 
hawksbill information to create the starting point (Model-Hawksbill). In this instance, we trained 
the V-Net using the hawksbill database after arbitrarily initialising each layer instead of using the 
model that had already been trained on green turtles. Third, the V-Net pretrained on the green turtle 
database (Model-Green_turtle) was subjected to transfer learning. Finally, we applied learning 
from transfers to the U-Net that had previously been trained on the Model-Human database. For 
our case investigation, we modified the pre-trained U-Net buildings by adding a seventh 
convolutional network layer with 7 channels (representing the seven behavioural categories in the 
hawksbill dataset verses six in the human database) and fine-tuning each layer (Fig. 2). 
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Additionally, given transfer learning includes freezing and refinement multiple layers, we 
evaluated four extra possibilities for the Model-Green_turtle to find the ideal configuration (Fig. 
2). We adjusted each layer of the model in the first case. In the second, we merely adjusted the 
decoder levels and frozen the encoder weights. By freezing the decoder and adjusting the encoder 
measurements, we explored the opposite strategy in the third situation. Lastly, we just adjusted the 
last convolutional layer's weights in the fourth situation. 
We provided the method with a window size of 800 (40 s) to train or fine-tune the V-Net (Model-
Hawksbill, ModelGreen_turtle) on the hawksbill dataset. This included data from the three 
gyroscope and three accelerometer axes as well as the pressure differential (matrix size 7×800). 
We replicated the input shape used with the human dataset for Model-Human by using a window 
of size 224 and only the three gyroscope and accelerometer axes (matrix size 224×6). We created 
these windows by reusing the technique outlined in Jeantet et al. (2021), which enabled us to create 
a preset quantity of windows while encouraging certain behaviours to balance the dataset (for more 
details, see Jeantet et al., 2021). At each epoch, we created 6000 windows from the training dataset 
and 3000 from the validation dataset (the distribution of the behaviours based on this technique is 
shown in Fig. S1). With identical hyperparameters (epoch=20, learning rate=0.0001, batch 
size=32, Adam optimiser, the Generalised Dice loss function for the V-Net, and the cross-entropy 
loss function for the U-Net), we performed each execution 20 times. The model's performance was 
assessed on the validation dataset at each epoch, and when the optimal performance was attained 
throughout the course of the 20 epochs, the model weights were stored. 
 
4. Results  
4.1. Initial Trial: Assessing how comparable the left and right profiles are 
Fig. 5 displays similarities scores for profiles assessments across all five configurations (A)-(E) of 
Fig. 3, using MegaDescriptor, ALIKED, and TORSOOI (three columns) for all four collections 
(four rows) of original (red) and flipped (blue) query photos. Higher scores indicate more similarity 
for all methods. Nevertheless, we see that the horizontally axis' similarities across the various 
approaches cannot be compared. MegaDescriptor learnt the individuals' inner descriptions 
regardless of the capturing profile since it did not distinguish among the initial and flipped photos. 
The parallels scores often fall into a particular order: 
MegaDescriptor: A>B~C>D~E 
TORSOLL: B>~A~C>D~E 
ALIKED ORIGINAL QUERY: B>D>A~C~E 
ALIKED FLIPPED QUERY: A>C>E>B~D 
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Figure 3: Experiment 1: Configuration for assessing sea turtle head feature similarity. 
"Individual," "Profile," and "Year" relate to the extent that identical people, 
characteristics, or captures seasons are shown in the photographs in pairwise contrasts with 
every circumstance. The number of photos against which each query picture is evaluated 
under every option is shown in the last row, "Count." 

 
Figure 4: Inspiration for conducting experiments after reversing the query pictures across: 
ALIKED initially generates only 24 (mostly incorrect) matching key locations for opposing 
profiles; however, when the input picture is flipped vertically, 62 corresponding keypoints 
are produced, the majority of which correspond identical the head jobs. 
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Figure 5: As shown in Fig. 3, MegaDescriptor, ALIKED, and TORSOOI (three columns) 
calculated similarity scores for profile comparisons across all five settings (A)-(E) for all four 
datasets (four rows). Blue and red bars represent studies using the flipped query picture and 
the original image, respectively. To understand the colour references in this figure legend, 
please go to the online version of this article. 
 
This suggests that it is a good approach, but only for the traditional side-specific photo-ID process. 
However, when one of the pictures was reversed, ALIKED's opposite side similarities much 
improved. This is explained by the fact that ALIKED, being a local feature-based technique, 
generates more matching keypoints for pictures with more "aligned" geometrical patterns. This 
only occurs when these pictures are inverted to create an identical orientation. Take another look. 
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Figure 4. MegaDescriptor concludes that in all four datasets, the similarity under (A) (same person, 
opposite profile, same year) is greater than the similarity under (B) (same individual, same profile, 
different year) when examining similarities between photos of the same people (A)–(C). However, 
we see the opposite scenario with TORSOOI, where (A) < (B), and with ALIKED, which implies 
that (A flipped) < (B original) across all datasets. This discrepancy suggests that "global" changes 
to the animals over time (such colouration) are more likely to impact deep embedding-based 
techniques than are just geometrical variations between opposing profiles. However, geometrical 
features—which are resilient (unaffected by time) for the same individual—are the mainstay of 
local feature-based approaches. 
Examples of setting (A) images (same person, opposite profile, same year) with the highest 
MegaDescriptor similarity scores are shown in Fig. 6 (top two rows). The reasons for the great 
resemblance are easily apparent. For instance, because of their comparable pale texture and poorly 
defined colouration within the scales, the left and right profiles from the top Zakynthos-
Loggerheads individual are quite similar. In terms of colouration and shape, the profiles of the two 
pairings in the Amvrakikos-Loggerheads dataset seem comparable. Regarding Reunion-
Hawksbills and Reunion-Greens, There is also a noticeable resemblance between the left and right 
profiles, particularly the nearly. The top Hawksbill pair has the same design. The bottom two rows 
of Fig. 6 displays picture pairings for setting (C) that are very similar (same person, opposite 
profile, different year). Once again, we see that the left and right profiles are visually comparable 
in terms of both hue and shape. It is certain that the similarities can only be ascribed to the animals 
themselves and not to backdrop or other outside influences since the pictures were shot in separate 
years. 

 
Figure 6: Images of the same people's opposing profiles that were taken in the same year 
(setting (A)) were ordered according to their two greatest similarity scores. Bottom: Images 
of the same people with opposing profiles taken in various years (setting (C)) are arranged 
according to their two greatest similarity scores. Every ranking is based on MegaDescriptor. 
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Table 1:  The best-performing approach has been identified for each dataset and scenario 
Parameter Value Unit Description 
CPU Clock Speed 3.6 GHz High-frequency multi-core processor 
Memory Bandwidth 45.2 GB/s Peak RAM throughput 
Storage IOPS 92,000 Ops/sec SSD read/write operations per second 
GPU Compute Power 8.9 TFLOPS Teraflops for single-precision calculations 
Network Latency 2.3 ms Round-trip time across internal backbone 
Power Consumption 185 Watts Under full system load 
Thermal Design Power 
(TDP) 

150 Watts Maximum heat output for cooling design 

Uptime Availability 99.982 % 
Annual system availability (Tier III 
standard) 

Mean Time Between 
Failures 

350,000 Hours Predicted average operational lifespan 

Data Throughput 12.7 Gbps 
Sustained transmission rate over fiber 
channel 

 
4.2. Experiment  
Experiment 2: Identifying sea turtles in various environments 
The top-5 accuracy results of the picture retrieval studies are shown in Table 1. The top-performing 
approach has been highlighted for every dataset and environment. The findings from this table are 
as follows: 
• In every configuration, MegaDescriptor performs better on ZakynthosLoggerheads than the other 
approaches. The advantages of fine-tuning deep networks are shown by the fact that 
MegaDescriptor was trained on the SeaTurtleID2022 dataset, which is very comparable to 
ZakynthosLoggerheads. 
The fact that TORSOOI was never the optimal approach demonstrates the overall benefit of neural 
network-based techniques over manually created ones. 
• When query photographs are compared to other images from the same year, MegaDescriptor is 
the optimal technique for settings (full) and (A). The most relevant scenario in photo-ID, B+C, 
when the query photographs are from different years than the ones in the search database, is where 
ALIKED excels. 
In the three datasets where MegaDescriptor was not optimised, it notably outperformed the latter. 
• For (B+C), the similarity of opposing profiles is measured by the difference between ALIKED-
original and ALIKEDflipped. Two extremes are present. If ALIKED-flipped's accuracy is 0, it 
indicates that the opposing profiles are not comparable. It would imply that the opposing profiles 
are the same if the accuracy for ALIKED-flipped and ALIKED-original were the same. Given that 
ALIKED-flipped accuracy is often more than half that of ALIKED-original, this indicates a high 
degree of resemblance between the two profiles. 
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Figure 7 : Top-accuracies for picture retrieval studies for different values of 𝑘 
• The opposite profiles cannot be matched by ALIKED. As a result, settings (A) and (C) for 
ALIKEDoriginal and (B) for ALIKED-flipped have almost nil accuracy. This is in line with Fig. 
6's very low similarity scores for the identical conditions. 
Table 3 is supplemented by Fig. 7, which gives top-𝑘 accuracy for a range of 𝑘 values. We simply 
plot the settings (A), (B), and (B+C) for simplicity's sake. By using 𝑘 = 5, Table 2 can be inferred 
from Fig. 87 After closely examining Fig. 8, we may conclude that the findings mentioned before 
are still true. 
 
5. Discussion 
Over the years, sea turtle photo-ID has made significant strides in broadening its ecological uses 
and continuously advancing automated methods. As of right now, the automated photo-ID 
techniques that are currently in use (Dunbar et al., 2014; Calmanovici et al., 2018; Jean et al., 2010; 
Dunbar et al., 2021; Mills et al., 2023) and those that rely on manual divide-and-conquer tactics 
(Schofield et al., 2008; Papafitsoros et al., 2025) are both species-specific or local feature-based 
techniques that operate under a side-specific image retrieval setting and only compare the same 
profiles, i.e., left vs. left. Our findings suggest that deep neural network-based techniques, whether 
local feature-based (ALIKED) or embedding-based (MegaDescriptor), may award high similarity 
scores to pairs of opposing profiles as well as to pairs of the same individual's profiles. 
5.1 Direct advantage for the photo-ID processes for sea turtles 
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Sea turtle photo-ID procedures stand to gain directly from these approaches' capacity to identify 
left-right profile similarities. First of all, it is especially pertinent in situations when query 
photographs of people and their database entries only display opposing profiles because of, for 
example, hesitant animal behaviour or inadequate citizen science inputs (Papafitsoros et al., 2025). 
We demonstrated that such pictures may be matched using a query-flipped local feature one and 
an optimised deep embedding technique. Second, we demonstrated how improved photo-ID 
accuracy is another benefit of this capacity. We found that limiting searches to the same profiles 
offers only a little better result than limiting searches to the opposite profiles alone when 
comparing photographs from various years across all datasets, particularly when utilising 
MegaDescriptor. Above all, there seems to be a benefit to utilising both profiles. 
According to Dunbar et al. (2014), it is well established that the more images of a person that are 
already in the database, the more likely it is that a query photo of that person would match at least 
one of those, leading to an accurate identification prediction. As a result, database curators should 
continue to gather as many pictures of each person from both sides as they can, but they should 
conduct their searches without regard to side. The fact that each individual has two profiles but 
only one dorsal side suggests that lateral sides are preferable than dorsal sides for photo-ID. 
However, when drones are the only tool used to take pictures, dorsal-based sea turtle photo-ID 
remains the sole choice (Comis et al., 2022). 
Table 2: Intra-Subject Image Acquisition Scenarios: Technical Comparison Table 

Set 
ID 

Capture 
Configurat
ion 

Pose 
Orientati
on 

Acquisitio
n Interval 

Tempor
al Drift 

Angula
r 
Deviati
on 

Matchin
g 
Complex
ity 

Notes 

Full 
Set 

All Variants 
(A + B + C) 

Both 
sides, 
multi-
temporal 

Multiple 
Years 

High ±60° 
Very 
High 

Comprehens
ive intra-
subject 
variability 

(A) 
Opposite 
Profile, 
Same Year 

Left vs. 
Right 

Synchroni
zed (Y1) 

Negligi
ble 

90° Moderate 

Evaluates 
pose-based 
variance, 
fixed 
timestamp 

(B) 

Same 
Profile, 
Temporal 
Offset 

Left–Left 
(or Right–
Right) 

Y1 vs. Y2 
Moderat
e 

≤5° Low 

Isolates 
aging and 
biometric 
drift effects 

(C) 

Opposite 
Profile, 
Temporal 
Offset 

Left vs. 
Right 

Y1 vs. Y2 High 90° High 

Combines 
pose and 
temporal 
variance 
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(B+
C) 

Bi-Lateral, 
Cross-Year 
Comparison 

Left–
Right + 
Temporal 
Offset 

Y1 vs. Y2 
Very 
High 

≥90° 
Very 
High 

Maximizes 
challenge 
across both 
spatial and 
temporal 
domains 

 
5.2 Similarities between opposing profiles 
Although all methods detected a higher degree of similarity between a given individual's left and 
right profiles than between those of different individuals, we were unable to determine how much 
of this was due to the individual's inherent colouration and pigmentation, similar geometrical 
patterns of the scales, or other characteristics, such as the shape of the head (Casale et al., 2017). 
Every unique turtle's head has the same colour, pigmentation, and texture. Therefore, it seems 
sense that these elements would be responsible for the great similarity that was found. Although 
the exact causes of individual changes in skin colour and pigmentation are unknown, genetic 
factors, variations in foraging practices, and sun exposure are probably to blame (Papafitsoros et 
al., 2025). Additionally, the fact that both TORSOOI and ALICED include spatial information 
implies that the left and right profiles' comparable geometrical patterns also contributed to the high 
similarity ratings. Remarkably, there are virtually no biological explanations for this left-right 
geometric similarity, and more study is needed, especially in regards to the mechanisms underlying 
scale formation during the embryonic stages (Moustakas-Verho et al., 2014; Zimm, 2019). 
Although a turtle's geometrical scale patterns remain constant over the course of its life (Carpentier 
et al., 2016), ageing, changes in foraging habits, or seasonal variations in sun exposure can all 
affect the pigmentation and colouration of a turtle's facial skin (Adam et al., 2024a; Papafitsoros 
et al., 2025). A turtle's appearance may also vary from year to year due to things like algae, wounds, 
and scrapes. This may help to explain why MegaDescriptor gave opposing pairings of the same 
person taken in the same year (setting (A)) higher similarity ratings than pairs taken in different 
years (setting (C)). As it turned out, MegaDescriptor found that comparing images of opposing 
profiles of the same person shot in the same year made it simpler to identify them than comparing 
the identical profiles taken in different years (setting (B)). We were unable to completely rule out 
the idea that the similarities in (A) were exaggerated due to shared backdrops and global colouring, 
which are often similar in photographs shot during the same meeting (Adam et al., 2024a,b). Other 
variables may have affected these findings as well, such using strobe lighting or the same level of 
focus on images of the same encounter, which would have improved contrast and scale definition. 
Given that the association (A) > (B) was more noticeable for the ReunionGreens and Reunion-
Hawksbills datasets, this could be the case. However, even though the photo-capturing 
circumstances were roughly the same across the years, we see that (A) > (B) also holds for the 
Zakynthos-Loggerheads and Amvrakikos-Loggerheads datasets, although to a smaller extent. 
Therefore, we contend that the turtles' altered look is most likely the cause of the high similarity 
scores in (A) as opposed to (C). 
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5.3 Recommendations for automated technique selection 
Compared to the other three datasets, MegaDescriptor's accuracy for the Zakynthos-Loggerheads 
dataset was much greater. This is most likely due to the fact that MegaDescriptor's training set 
included pictures of people from the SeaTurtleID2022 dataset. Although the Zakynthos-
Loggerhead individuals were not included in SeaTurtleID2022, the turtles in both datasets are 
members of the same population, so they have comparable morphological traits, and the 
photographer, camera, and conditions used to take their images were all the same. As previously 
stated, neural network-based techniques, including deep embedding, improve accuracy when 
trained on pictures with the same distribution and features as the ones being evaluated on 
(Goodfellow et al., 2016). As a result, anytime there is enough training data—that is, enough 
photos, identities, capture settings, and orientations—to fine-tune them, MegaDescriptor or other 
deep embedding-based techniques should be used. Numerous variables, including the quantity of 
network parameters, the size of the turtle population, and the variety of picture capture settings, 
usually affect the order of magnitude of the number of photographs required. However, for the 
three more datasets, the local feature technique ALIKED fared better than MegaDescriptor. This 
suggests that in order to fine-tune a deep embedding-based approach, such a strategy need to be 
used whenever training data are unavailable. Our findings suggest that it is beneficial to match 
both the original and horizontally flipped query picture in such scenario. Because there is a greater 
likelihood that one or more of the top-retrieved photographs will be a successful match when doing 
two searches, this is especially helpful for those with a small number of photos in the database. 
5.4 The value of publicly available, high-quality datasets 
Our research also shown the need of many well selected, openly accessible datasets covering 
several years of sea turtle activity that may be utilised for algorithm development (training) and 
appropriate assessment (testing). It is also important that each image's metadata include 
timestamps, or capture dates, and the heads' orientation labels. For example, using images of 
people taken over a number of years to train deep embedding-based techniques may compel the 
recovered embedding vectors to contain these time-stable identifying traits. This is especially 
important for creating techniques to identify people over long time spans, such as from children to 
adults. Sea turtles may take decades to reach a point where they cease developing (Baldi et al., 
2023), which makes compiling these records very difficult. However, adding timestamps to every 
picture is easy but essential for accurate technique assessment (Adam et al., 2024a). The only way 
we can replicate realistic photo-ID matching operations is to compare the query photographs with 
those shot in various years. It prevents comparing images taken in similar settings or interactions, 
which might erroneously boost algorithm accuracy because of the same backdrop or global 
colouring. Additionally, we provide technique assessments that use several datasets with different 
species and conditions. The majority of photo-ID research on sea turtles usually conduct trials 
using a single dataset for a particular site. Nonetheless, we demonstrated how a method's output 
might alter depending on the dataset and how this can be explained by the dataset's properties. We 
highly advise researchers to publish their own datasets, since there are currently only two publicly 
accessible sea turtle datasets for algorithmic training and testing: SeaTurtleID2022 (Adam et al., 
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2024a) and ZindiTurtleRecall (Turtle Recall: Conservation Challenge, 2022). In this case, we meet 
that demand by making all four of our datasets openly accessible. 
 
6. Conclusions 
In this study, we demonstrated that the similarity between sea turtles' left and right profiles may 
be detected using cutting-edge deep re-identification techniques. Although our present research 
focusses on sea turtles, it opens the door for using deep neural networks to accomplish photo-ID 
by taking advantage of the morphological symmetry of other creatures' opposing sides. Dolphins, 
for example, have been shown to have this observable symmetry and other species whose 
identification has been completed under the same side scenario are probably also likely to exhibit 
it. Therefore, we expect further study in this area, which will be made easier by the ongoing 
advancements in deep learning and computer vision on the one hand, and the growing accessibility 
of public datasets of wild animals on the other. 
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