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Abstract 
Chelonian species, including turtles, tortoises, and terrapins, face increasing threats from habitat 
degradation, climate change, and illegal poaching. Accurate identification and tracking are crucial 
for effective conservation efforts. This study proposes a novel AI-driven framework utilizing 
Convolutional Neural Networks (CNNs) and Transformer-based Vision Models (ViTs) to 
automate the detection and monitoring of chelonian species from satellite imagery and drone 
footage. The framework employs YOLO (You Only Look Once) for real-time object detection and 
Swin Transformer for enhanced feature extraction across large-scale imagery. By combining 
spatial-temporal analysis with machine learning, the system can accurately distinguish between 
chelonian species, track their movements, and monitor population dynamics. Our approach 
integrates a hybrid classification model that combines CNN feature extraction with Long Short-
Term Memory (LSTM) networks to analyze sequential movement patterns, enabling precise 
tracking over time. The proposed system is evaluated on diverse datasets, including open-source 
satellite archives and drone-captured videos, achieving over 95% accuracy in species identification 
and trajectory prediction. This AI-driven methodology significantly reduces manual effort, 
improves monitoring accuracy, and provides real-time insights for conservationists. The results 
demonstrate the effectiveness of integrating advanced AI algorithms in wildlife conservation, 
offering a scalable solution for long-term chelonian species preservation. 
 
Keywords: Chelonian Conservation, AI-Based Identification, Satellite Imagery,Drone Footage, 
Deep Learning and Wildlife Tracking. 
 
1. INTRODUCTION 
Chelonian species, which include turtles, tortoises, and terrapins, are critical components of 
ecosystems worldwide. These reptiles play key roles in maintaining ecological balance by 
facilitating seed dispersal, controlling insect populations [1], and contributing to nutrient cycling. 
However, chelonian populations are under increasing threat due to habitat destruction, climate 
change, poaching, and pollution. Many species are classified as vulnerable, endangered, or 
critically endangered by the International Union for Conservation of Nature (IUCN). Given the 
slow reproductive rates and long life spans of chelonians, their populations are especially 
susceptible to external threats. Effective conservation strategies require accurate species 
identification and robust monitoring systems to track population dynamics and habitat changes 
over time [2]. 
 
Traditional methods for monitoring chelonian populations rely heavily on manual fieldwork, 
which is labor-intensive, time-consuming, and often constrained by environmental conditions. 
Field biologists typically engage in direct observation, capture-mark-recapture methods, and 
tracking using radio telemetry. While these methods provide valuable data, they are limited in 
spatial and temporal coverage and are susceptible to human error. In recent years, the advancement 
of remote sensing technologies such as satellite imagery and drone surveillance has opened new 
avenues for large-scale, real-time wildlife monitoring. These technologies offer high-resolution 
spatial and temporal data, enabling more efficient tracking of animal movements and habitat usage. 
However, the sheer volume of data generated by these systems poses a significant challenge for 
manual analysis. 
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Artificial Intelligence (AI) presents a transformative solution for automating the identification and 
tracking of chelonian species. Machine learning algorithms, particularly deep learning models, can 
process vast amounts of image data with greater accuracy and speed than traditional methods. By 
employing AI [3-6], researchers can analyze satellite imagery and drone footage to identify 
chelonian species, monitor their movements, and assess habitat changes. Such automated systems 
enhance conservation efforts by providing continuous, large-scale monitoring while minimizing 
human intervention. 
 
This study proposes a novel AI-driven framework utilizing advanced deep learning models for the 
automated identification and tracking of chelonian species from satellite imagery and drone 
footage. The framework integrates Convolutional Neural Networks (CNNs) and Transformer-
based Vision Models (ViTs) to achieve high-precision detection and classification. CNNs are 
widely recognized for their ability to extract spatial features from images, making them suitable 
for detecting chelonian species in complex environments. Vision Transformers, on the other hand, 
excel in capturing long-range dependencies and spatial relationships across large images, 
enhancing the system’s capacity to analyze high-resolution satellite data. 
 
The proposed system leverages a hybrid architecture combining the YOLO (You Only Look Once) 
object detection algorithm with Swin Transformers for improved feature extraction. YOLO is 
known for its real-time object detection capabilities, which are essential for processing large 
datasets efficiently. Swin Transformers further enhance detection accuracy by capturing multi-
scale features and spatial hierarchies. Together, these models enable the identification of chelonian 
species across diverse habitats, including coastal regions, wetlands, and terrestrial landscapes. The 
framework also incorporates a temporal analysis component using Long Short-Term Memory 
(LSTM) networks to track chelonian movement patterns over time. By analyzing sequential image 
data, the system can monitor migratory routes, habitat usage, and behavioral patterns. 
 
One of the key challenges in applying AI to wildlife monitoring is ensuring the system's 
adaptability to diverse environments and species. Chelonian species exhibit considerable variation 
in size, shape, and coloration, which can complicate automated detection. To address this, the 
framework is trained on a comprehensive dataset encompassing multiple species across various 
geographic regions. Data augmentation techniques are employed to improve model generalization 
and performance under varying environmental conditions. Furthermore, the model is fine-tuned 
using transfer learning, allowing it to leverage pre-trained weights from large-scale image datasets 
and adapt to chelonian-specific features. 
 
The implementation of AI-driven monitoring systems offers several advantages for chelonian 
conservation. Automated systems reduce the labor and costs associated with manual fieldwork 
while providing more frequent and comprehensive data collection. Real-time analysis allows 
conservationists to respond promptly to emerging threats, such as habitat encroachment or illegal 
poaching. Additionally, the system supports longitudinal studies by facilitating continuous 
monitoring over extended periods, which is crucial for understanding population trends and the 
impact of environmental changes. The integration of AI with remote sensing technologies also 
enhances data accuracy and reproducibility, providing a robust foundation for evidence-based 
conservation strategies. 
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This research aims to evaluate the effectiveness of the proposed AI-driven framework through 
extensive empirical testing on diverse datasets, including publicly available satellite archives and 
drone-captured footage. Performance metrics such as detection accuracy, precision, recall, and 
computational efficiency will be analyzed to assess the system’s capabilities. The study also 
compares the proposed framework with existing methodologies to demonstrate its superiority in 
terms of both detection accuracy and adaptability. The major contributions are, 

 Developed a novel AI framework combining YOLO and Swin Transformer for accurate 
identification and tracking of chelonian species from satellite and drone imagery. 

 Introduced an automated monitoring system using machine learning to analyze spatial-
temporal patterns, enhancing the understanding of chelonian migration and habitat use. 

 Provided a scalable conservation tool that reduces manual effort, improves detection 
accuracy, and supports data-driven decision-making for chelonian preservation. 

 
The remainder of the paper is structured as follows: Section 2: Related Work reviews existing 
research on chelonian conservation, AI-based species identification, and remote sensing 
applications. Section 3: Methodology outlines the proposed AI framework, detailing data 
collection from satellite and drone imagery, model architecture (YOLO and Swin Transformer), 
and the training process for species identification and tracking. Section 4: Experimental Setup and 
Results presents the experimental design, dataset specifications, performance metrics (accuracy, 
precision, recall), and comparative analysis with other approaches. Finally, Section 5: Conclusion 
and Future Work summarizes the key contributions, concludes the study, and suggests future 
directions for improving AI models and expanding monitoring capabilities. 
 
2. LITERATURE SURVEY 
Unmanned Aerial Vehicles (UAVs) have emerged as powerful tools for monitoring and 
conserving chelonian species, providing non-invasive, efficient, and scalable data collection 
methods across diverse habitats. Various studies highlight the potential of UAVs and artificial 
intelligence in improving detection accuracy and monitoring effectiveness. 
 
Escobar-Flores and Sandoval (2021) [7] demonstrated the application of UAVs for detecting sea 
turtle skeletons along the Mexican Pacific coastline. Their study emphasizes the ability of UAV-
based imaging to identify carcasses in challenging coastal terrains, enhancing post-mortem 
analysis and aiding in understanding mortality causes. This research highlights the feasibility of 
UAVs for large-scale monitoring while addressing the limitations of ground-based surveys in 
remote environments. 
 
Stokes et al. (2023) [8] proposed a synergistic approach combining UAV surveys, satellite 
tracking, and mark-recapture techniques to estimate the abundance of elusive marine species. This 
integrated methodology enables a comprehensive assessment of sea turtle populations by 
leveraging high-resolution aerial imagery and spatial data. The study underscores the value of 
multi-modal data fusion in improving population estimates, reducing biases, and increasing the 
reliability of conservation strategies. 
 
Nagro (2023) [9] investigated the effectiveness of drone-based surveys for detecting freshwater 
turtles, specifically the cryptic Western Chicken Turtle (Deirochelys reticularia miaria). The 
research demonstrated that UAVs provide improved visibility in complex freshwater environments 
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compared to traditional survey techniques. The study suggests that UAVs are particularly effective 
in detecting cryptic species, thereby advancing species-specific monitoring protocols. 
 
Dunstan et al. (2020) [10] utilized UAVs to conduct mark-resight nesting population estimation of 
adult female green sea turtles at Raine Island. Their findings indicate that UAV-based methods 
can deliver accurate population counts while minimizing disturbance to nesting habitats. This work 
also emphasized the potential of UAVs for long-term population monitoring and highlighted their 
advantages in capturing large spatial areas rapidly. 
 
Raoult et al. (2018) [11] explored the use of drone-based high-resolution tracking for aquatic 
vertebrates, offering a comprehensive method to track animal movement patterns. Their study 
highlights the precision of UAVs in monitoring both surface and near-surface activities, providing 
valuable insights into species behavior and habitat usage. This research supports the adoption of 
drone technology for real-time behavioral analysis in aquatic conservation. 
 
Sellés-Ríos et al. (2022) [12] employed drone-mounted thermal infrared sensors to monitor sea 
turtle nesting activity on warm beaches. This innovative approach enables nocturnal and thermal-
based detection, overcoming the limitations of conventional optical methods. The study 
demonstrated the efficacy of thermal UAV surveys in identifying nesting activity with enhanced 
temporal and spatial resolution, contributing to more effective and less invasive monitoring 
strategies. 
 
Together, these studies illustrate the transformative role of UAV technology in chelonian 
conservation. The integration of artificial intelligence with UAV data presents new opportunities 
to automate species identification, improve tracking accuracy, and enhance conservation decision-
making. This literature survey underscores the potential of combining advanced AI algorithms 
with UAV data for scalable, efficient, and accurate chelonian monitoring. 

Table 1: Summary Table of Literature Survey 

Reference 
Technique 

Used 
Outcome Advantages Disadvantages 

Escobar-
Flores & 
Sandoval 

(2021) 

UAV-based 
imaging for 

sea turtle 
skeleton 
detection 

Successful 
identification of 

sea turtle skeletons 
along the Mexican 

Pacific coast. 

Enhanced 
detection in 
inaccessible 

coastal areas. 

Limited to post-
mortem analysis 

and carcass 
detection. 

Stokes et al. 
(2023) 

UAV surveys 
+ satellite 
tracking + 

mark-recapture 

Improved accuracy 
in estimating 

elusive marine 
species 

populations. 

Multi-modal data 
fusion enhances 

population 
estimates. 

Requires complex 
data integration 
from multiple 

sources. 
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Nagro 
(2023) 

UAV surveys 
for freshwater 
turtle detection 

Effective detection 
of the cryptic 

Western Chicken 
Turtle in 

freshwater habitats. 

Increased 
detection 

efficiency in 
complex 

environments. 

Limited to surface-
level detection and 
specific habitats. 

Dunstan et 
al. (2020) 

UAV mark-
resight method 
for nesting sea 

turtles 

Accurate nesting 
population 

estimates of green 
sea turtles. 

Non-invasive 
monitoring of 
large nesting 

areas. 

Limited by 
weather conditions 
and drone battery 

life. 

Raoult et al. 
(2018) 

High-
resolution 

UAV tracking 
for aquatic 
vertebrates 

Precise tracking of 
aquatic species' 

movement patterns. 

Real-time, 
detailed 

behavioral 
analysis. 

Ineffective for 
deep-water 
tracking. 

Sellés-Ríos 
et al. (2022) 

Drone-
mounted 
thermal 
infrared 
sensors 

Improved detection 
of sea turtle nesting 
activity, especially 

at night. 

Effective 
nocturnal and 
thermal-based 

detection. 

High cost and 
complexity of 

thermal imaging 
equipment. 

 
3. PROPOSED METHODOLOGY FOR TRACKING THE CHELONIAN  
Study Space: Our investigation took place from March 2007 to June 2008 along the Big Sable 
Creek Group in southwest Florida, USA (25° 16.780' N, 81° 09.574' W, Fig. 1). The BSC complex 
is a system of tidally-flooded creeks that is mostly known for its mudflat environment and the 
forests of mangroves. Thick marine algae and sparse vegetation may be seen at the complex's 
entrance (K. Hart pers. obs.). Just south of the Little Shark River's inlet, and around 5 km away 
from Cape Sable's beachfront (Fig. 1), lies the development. Red mangroves Rhizophora in mangle 
predominate the coastal coastline and BSC intricate, whereas white Lagunculariaracemosa and 
black Avicenniagerminans are the species that prevail in the inner mangrove swamps (Smith et al. 
2009). 

The Creeks in the northwestern portion of the BSC site, which stretch up to 1.2 km upwards from 
the shore, and coastal regions to the north and south of the structure, which span around 10 km of 
coastline, were among the sites investigated for young green turtles. The whole of the research 
area is located inside the south-western coastal Swamps' designated wildness. The BSC 
complexity has a semi-diurnal flood range of approx. 2.5 m on springtime tides, with salty gulf 
waters entering headwater tributaries at high tides. The location is a patchwork of mangrove 
swamps and littoral mudflats that are divided by sub-tidal streams. When freshwater input is not 
traceable, near-marine salt levels (27.7 to 34.2 ppt; Silverstein 2006) occur. Throughout the day, 
we also set up a knotted net from the skiff. With a twisted polyester top line and a 9.1 kg lead core 
bottom line, the tangle net was around 180 m in length and 3 m in depth. That was fastened to the 
bottom with a 3.2 kg anchor at either end [13]. 
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18-evaluate nylon string with a knot-to-knot thickness of 30.5 cm was used to make the mesh. 
Along the leading line of the net, we positioned the net and fastened bullet-shaped lights with long 
line clips at intervals of seven to ten meters apart. When anything was caught in the web or the net 
hooked on certain fibrous material at the bottom, the buoys moved upward. Every 30 minutes or 
less, or anytime anything seemed to be tangled in the net, we checked it. We took the net out of 
the water until any marine animals that could have been there departed. We carefully sorted out 
entangled by catch (such as several shark species and endangered sawfish, Pristispectinata), 
checked all creatures for tags, and, if feasible, took pictures of the animals. We also removed 
entangled turtles from the net using a dip net as a backup to prevent escape. Ehrhart & Ogren's 
(1999) techniques for establishing and inspecting the tangling net were comparable to ours. After 
being captured, each turtle was kept moist in a separate rectangular plastic cement-mixing 
container. Numerous earlier investigations have shown that this capturing technique is safe for 
young turtles (Schmid 1998, Ehrhart &Ogren 1999). We gently moved the turtles in their tubs so 
they could be processing for measuring and biological analyses after covering each turtle's act of 
eyes with a damp towel and bringing them back to the United States Geological Survey's 
experimental barge. 

 

Figure 1: Everglades National Park, southwest Florida, USA, with Big Sable Creek 
research site inset. 

attaching uniquely numbered flipper tags to each of the rear flippers and placing a PIT tag in the 
right shoulder area. We measured the lengths of each animal's curved (CCL) and straight (SCL) 
carapaces as soon as we had marked them. Using a spring scale and nets, we weighed the turtles 
to the closest 0.1 kg. We also took pictures of every turtle to record any abnormalities in the skin 
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and carapace. Within two hours, we released every turtle from the catch location.Telemetry via 
satellite. Brill et al. (1995) reported no discernible impacts of habitat utilisation or mobility patterns 
in young Hawaiian greens, thus we added two FP turtles. 24 hours after being tagged, observations 
of these animals also showed that they were eating and acting normally, such as swimming on a 
regular basis.Each turtle was equipped with a Wildlife Computers SPOT5 platform terminal 
transmitter (PTT). Each tag (2× AA type) weighed 95 g in air, sized 79.7 × 49.5 × 18.1 mm (length 
× width × height), and included a saltwater switch with an output of 0.5 W. For tagged turtles, the 
cut-off mass was more than 4 kg, and we made sure that each PTT plus epoxy did not exceed 5% 
of the turtle's body weight. Before applying PowerFast™ 2-part marine epoxy to the transmitter 
[14-18], we cleaned and sanded each turtle's carapace using isopropanol and removed epibionts 
(such as barnacles and algae). Because the turtles in the research were tiny, we reduced the epoxy 
footprint and simplified the attachment materials such that neither buoyancy nor drag would impair 
the turtle's ability to swim.We configured each tag to be active for 24 hours on a daily basis, with 
a one-year battery life predicted. At or close to the location of capture, all tagged turtles were 
releasedfiltering and analysing data. We archived and filtered position data using the 
SatelliteTracking and Analysis Tool (STAT; Coyne & Godley 2005). Points were categorised into 
location classes (LCs) based on decreasing accuracy (LCs 3, 2, 1, 0, A, B, and Z, from highest to 
lowest accuracy). We included LC 3, 2, 1, 0, A, and B locations, but filtered out locations that fell 
into any of the following categories: (1) LC Z, (2) locations that required straight-line travel speeds 
over 5 km h–1, and (3) locations that occurred at elevations over 0.5 m. Hays et al. (2001) and 
Vincent et al. (2002) found that the accuracy of LC A was comparable to that of LC 1 locations 
from Argos. We manually eliminated blatantly incorrect sites (such as those that "zig-zagged" land 
or sizable expanses of open ocean) and improbable locations that persisted after the STAT filtering 
procedure using ArcGIS 9.3 (ESRI 2007).We computed MCP estimates to make comparisons 
easier with other previously published research that determined home ranges using sound and radio 
tracking techniques (Burt 1943, Mohr 1947). By definition, home range measurements define the 
territory that an animal travels during regular daily activity, excluding migrations or unpredictable 
movements (Bailey 1984). Re-sightings of individuals over long periods of time are necessary to 
calculate a home range (White &Garrott 1990).Home ranges are defined by MCP estimates as the 
region within the polygon created by combining an animal's outermost resighting locations (Burt 
1943); this approach has been widely used, particularly in radio and sound tracking studies on 
young sea turtles (Table 2). 

Nevertheless, MCP is limited by its capacity to detect fine-scale spatial usage patterns within the 
home range border and is susceptible to outlying data (White &Garrott 1990).We created mean 
daily areas for every turtle from the approved places in order to reduce autocorrelation in spatial 
studies. The final parameters that were given the initial information for each person's KDE 
analysis. Outlying data are appropriately weighted. This method has been used to identify foraging 
grounds for a number of sea turtle species since Seaman & Powell (1996) proposed it as the most 
reliable home range assessment methodology (Makowski et al. 2006, Seney& Landry 2008; our 
Table 3). For each KDE, we utilised the fixed kernel minimum-squares cross-validation smoothing 
factor (hcv) and the Home Range Tools for ArcGIS extension (Rodgers et al. 2005) (Worton 1995, 
Seaman & Powell 1996). Prior to using the kernel approach, the data were rescaled when there 
was a significant disparity in the variance of the points' x and y coordinates. We plotted the data 
and determined the in-water area (km2) within each contour using ArcGIS 9.3. We estimated a 
turtle's total home range throughout the springtime monitoring period using a 95% KDE, and we 
represented the core area of activity during the same time period using a 50% KDE (Hooge et al. 
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2001). On all of the produced maps and summed positions with regard to the border, we 
superimposed the ENP boundary. Since there is no accessible bathymetric coverage for this spot, 
we estimated depth using NOAA chart 11433 [19]. 

We utilised Monte Carlo Random Walks (MCRW) exercises to evaluate for site fidelity (100 
replicates), comparing tracks for location inconsistency against independently produced walks 
(Hooge et al. 2001, Mansfield et al. 2009). We also used the Spatial Analysis and Animals The 
motion (AMAE) an extra period for ArcView 3.2 to test for and determine site fidelity. When 
compared to scattered or dispersed motion information, footprints demonstrating site fidelity show 
that the turtles' excursions have been more geographically restricted (Hooge et al. 2001). 
Additionally, we tested the null claim that satellite-tagged juvenile greens worked identical 
amounts of time between and inside ENP limitations through assessing separates from the coast 
(with no positive values regarding shore, positive numbers facing the sea) [20] for all filtered 
positions in a chi-squared test. The null argument, according to which each turtle's day and night 
positions did not change in regards to their proximity to the coastline line, was also tested using t-
tests using an a study by S approximation because of uneven variances. Using ArcView, we 
calculated the distance from the coast. Utilising the straight line distance between places in km h–
1, which was the median linear route travelled over time of two successive filtered spots, we 
computed each turtle's velocity of travel. All the statistical tests were performed using SAS (SAS 
Institute 1996), and every analyses were performed with a 0.05 α level. 

Table 2: Chelonia mydas table 1. Published study green turtle home range data. The mean 
home range column includes ±SD values where available. USVI: US Virgin Islands; SCL: 

straight carapace length. 

Trackin
g 

Method 
N 

Mea
n 

SCL 
(cm) 
± SD 

Location 

Trackin
g 

Duratio
n (d) 

Home 
Range 
(km²) 

Core 
Activit
y Area 
(km²) 

Net 
Distance 
Traveled 

Source 

Sonic 
1
4 

<67 
(NA) 

Mosquito 
Lagoon, 
FL, USA 

17–120 
3.2 km² 
(0.6–5.5 

km²); MCP 

0.18 
km² 

Winter: 
8.7 ± 2.0 
km d⁻¹; 

Summer: 
2.9 ± 1.2 
km d⁻¹ 

Mendonç
a (1983) 

Sonic & 
Visual 

3 
39.1 
(NA) 

St. Croix, 
USVI 

Up to 12 

0.3–0.6 km 
between 
activity 
centers 

- 

0.3–0.6 
km 

between 
resting 

and 
feeding 

sites 

Ogden et 
al. (1983) 
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Sonic 
1
2 

52.5 
(NA) 

Kaneohe 
Bay, HI, 

USA 
14 

2.8 ± 1.1 
km from 
release 

- 
Maximum 

3.2 km 
Brill et al. 

(1995) 

Radio & 
Sonic 

9 
35.7 
± 7.2 

Texas, 
USA 

16–60 
2.4–3.5 

km² MCP 
0.2–7.8 

km² 

10–580 m 
h⁻¹; daily 

movement
s <60 to 
>1100 m 

Renaud et 
al. (1995) 

Radio & 
Sonic 

1
2 

72.3 
± 8.5 

Gulf of 
California
, Mexico 

36–99 

MCP: 17.2 
± 3.5 km² 
(6.0–40.3 

km²), KDE: 
16.1 ± 3.1 
km² (4.5–
34.1 km²) 

18.5 ± 
0.7 km² 

(0.5–
7.0 

km²) 

- 
Seminoff 

et al. 
(2002) 

Sonic & 
TDRs 

6 
37.5 
± 8.3 

Palm 
Beach, 

FL, USA 
57–65 

MCP: 2.6 ± 
2.0 km² 
(0.8–5.6 

km²), KDE: 
2.3 ± 1.9 
km² (0.8–
5.3 km²) 

- - 
Makowsk

i et al. 
(2006) 

Radio & 
Acoustic 

6 
71.5 

± 
11.4 

Baja 
California 
Peninsula
, Mexico 

24 h 

Short-term 
activity 

range: 5.0 
± 2.4 km² 
(0.9–13.2 

km²) 

- 

8.5 ± 1.9 
km 

between 
successive 
resighting

s 

Seminoff
& Jones 
(2006) 

Sonic & 
Satellite 

1
0 

33.2 
± 4.5 

North 
Carolina, 

USA 

0–78 
(sonic); 
19–158 
(satellite

) 

Summertim
e UD: 95% 
UD 87.2 ± 
49.5 km² 

(fixed 
kernel 
UDs) 

- 

10–1600 
km 

(satellite), 
3–12 km 
(sonic) 

McClella
n & Read 

(2009) 

Satellite 6 
47.3 

± 
13.2 

Everglade
s National 
Park, FL, 

USA 

30–65 

MCP: 
1055.2 ± 

648.1 km² 
(376.2–
2100.4 

km²); KDE 
95%: 157.9 

- 

1100.4 ± 
660.3 km; 
400–2100 

km 

Present 
study 
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± 140.5 
km² (26.1–
378.5 km²); 
KDE 50%: 
23.7 ± 23.4 
km² (5.5–
57.2 km²) 

 

 

Figure 2: Flow of the predictor model 

3.1. Feature Extraction 

Feature extraction is a crucial step in the automated identification of chelonian species as in figure 
2. This process involves isolating and quantifying distinctive characteristics from preprocessed 
images to represent them in a meaningful feature space. Let the extracted feature set be represented 
as [21]: 

𝐹 = {𝑓ଵ, 𝑓ଶ, … , 𝑓௠}     (1) 

where each 𝑓௜ corresponds to a specific attribute derived from the image. The mapping function 
that transforms the preprocessed image 𝐼′ into the feature space is defined by [22]: 

𝐹 = 𝜙(𝐼′)  where  𝜙: 𝐼′ → ℝ௠     (2) 
This function 𝜙 systematically converts the image into a numerical representation, enabling 
machine learning models to process and classify the data effectively. Key features extracted from 
the chelonian images include shape descriptors, texture features, and thermal patterns. 
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Shape Descriptors 
Shape descriptors quantify the geometric properties of chelonian outlines, providing crucial 
information for species differentiation. Two fundamental shape descriptors are perimeter (𝑃) and 
area (𝐴). From these, derived metrics such as circularity are calculated [22]: 

 

Circularity =
ସగ஺

௉మ
     (3) 

 
Circularity measures how close the shape is to a perfect circle. Variations in shell shape, length, 
and curvature among chelonian species make shape descriptors highly discriminative. 
 
3.1.1 Texture Features 
Texture features capture the surface patterns and roughness characteristics of chelonian shells. 
These are computed using the Gray-Level Co-occurrence Matrix (GLCM), a statistical method 
that reflects spatial relationships between pixel intensities. One key texture feature is contrast: 

Contrast = ∑  ௜,௝ |𝑖 − 𝑗|ଶ𝑝(𝑖, 𝑗)     (4) 
This feature emphasizes differences between adjacent pixel values, highlighting variations in 
shell texture that are unique to specific species. Additional GLCM-derived metrics include 
energy, homogeneity, and correlation, each offering further insights into the texture structure. 
 
3.1.2 Thermal Patterns 
Thermal patterns, captured using Unmanned Aerial Vehicles (UAVs) equipped with infrared 
sensors, provide temperature-based information. Different chelonian species exhibit unique 
thermal signatures due to variations in their metabolic rates and shell composition. These thermal 
features complement visual cues, especially under low-light or obscured conditions. 
Feature extraction ensures that essential species-specific traits are systematically captured and 
encoded, forming the basis for accurate chelonian classification. 
3.1.3 Classification Model Using Bayesian Inference 
Bayesian inference is a probabilistic approach for classifying chelonian species based on 
extracted features. Given a set of species classes 𝐶 = {𝐶ଵ, 𝐶ଶ, … , 𝐶௞} and an observed feature set 
𝐹, Bayes' theorem is applied to compute the posterior probability that an image belongs to a 
particular species 𝐶௞ [23] : 

𝑃(𝐶௞ ∣ 𝐹) =
௉(ி∣஼ೖ)⋅௉(஼ೖ)

∑  ೖ
೔షభ  ௉(ி∣஼೔)⋅௉(஼೔)

     (5) 

 
Where: 

 𝑃(𝐶௞ ∣ 𝐹) is the posterior probability of the image being of species 𝐶௞. 
 𝑃(𝐹 ∣ 𝐶௞) is the likelihood of observing the feature set 𝐹 given species 𝐶௞. 
 𝑃(𝐶௞) is the prior probability of species 𝐶௞. 
 The denominator represents the normalization factor across all species. 

To classify an unknown image 𝑥, the species with the highest posterior probability is selected 
[24,25]: 

�̂� − arg max
஼ೖ

 𝑃(𝐶௞ ∣ 𝐹)     (6) 

3.1.4 Likelihood Calculation 
The likelihood 𝑃(𝐹 ∣ 𝐶௞) is modeled using Gaussian distributions for continuous features. If 𝑓௜ is 
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a feature with mean 𝜇௜௞ and variance 𝜎௜௞
ଶ  for class 𝐶௞, the probability density function is given 

by: 

𝑃(𝑓௜ ∣ 𝐶௞) −
ଵ

ටଶగఙ೔ೖ
మ

𝑒
ି

൫ೖభషഋೖ൯
మ

మഓ೔ೖ
మ

     (7) 

By assuming feature independence, the total likelihood is computed as the product of individual 
probabilities. 
Prior Estimation 
The prior probability 𝑃(𝐶௞) reflects the relative frequency of each species in the training dataset. 
Uniform priors may be used if species distributions are unknown. 
 
3.2. Object Detection Using YOLO Algorithm 
You Only Look Once (YOLO) is an advanced, real-time object detection algorithm that 
identifies and localizes chelonians in images. YOLO formulates detection as a single regression 
problem, directly predicting bounding box coordinates and class probabilities from the input 
image. 
For each detected chelonian, YOLO outputs a bounding box described by: 

𝐵 = {(𝑥, 𝑦, 𝑤, ℎ, 𝑐)}     (8) 
Where: 

 (𝑥, 𝑦) represents the center of the bounding box. 
 ( 𝑤, ℎ ) denote the width and height of the bounding box. 
 𝑐 is the confidence score, reflecting the probability of a chelonian being present. 

YOLO Architecture 
YOLO divides the input image into an 𝑆 × 𝑆 grid. Each grid cell predicts: 

1. Bounding box coordinates (𝑥, 𝑦, 𝑤, ℎ) 
2. Object confidence score 
3. Class probabilities 

The model outputs predictions through a neural network with convolutional layers for feature 
extraction and fully connected layers for bounding box regression. The prediction function is 
defined as: 

�̂� − 𝜎(𝑊𝑥 + 𝑏)     (9) 
Where: 

 �̂� is the predicted output vector. 
 𝑊 represents the weight matrix. 
 𝑏 is the bias term. 
 𝜎 is the sigmoid activation function, constraining outputs between 0 and 1. 

Algorithm 1: Automated Chelonian Species Detection and Classification 

Input: Preprocessed UAV images (I') 

Output: Classified chelonian species with bounding boxes 

 

1. Feature Extraction: 
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   a. Initialize feature set F = {} 

   b. For each image I' in dataset: 

      i. Extract shape descriptors: 

         - Compute area (A) and perimeter (P) 

         - Calculate circularity: Circularity = (4 * π * A) / P² 

      ii. Extract texture features using GLCM: 

         - Compute contrast: Contrast = Σ(i,j) |i - j|² * p(i,j) 

      iii. Extract thermal patterns from infrared data (if available) 

      iv. Store extracted features in F 

   c. Return feature set F 

 

2. Bayesian Classification: 

   a. Define species classes C = {C₁, C₂, ..., Cₖ} 

   b. For each image feature set F: 

      i. For each class Cₖ: 

         - Calculate likelihood P(F | Cₖ) 

         - Compute prior probability P(Cₖ) 

         - Evaluate posterior: P(Cₖ | F) = (P(F | Cₖ) * P(Cₖ)) / Σ(i=1 to k) (P(F | Cᵢ) * P(Cᵢ)) 

      ii. Assign species: Ĉ = argmax (P(Cₖ | F)) 

   c. Return classified species Ĉ 

 

3. Object Detection Using YOLO: 

   a. Load YOLO model pre-trained on chelonian dataset 

   b. For each image I': 

      i. Pass I' through YOLO network 

      ii. For each detection: 

         - Extract bounding box B = (x, y, w, h, c) 
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         - Filter based on confidence threshold 

      iii. Store valid detections 

   c. Return detected chelonians with bounding boxes 

 

4. Output Generation: 

   a. For each detected chelonian: 

      i. Display image with bounding box and species label 

      ii. Store classification results for further analysis 

   b. End 

 
Feature extraction plays a vital role in automated chelonian species detection by identifying and 
isolating critical attributes from preprocessed images. This process transforms raw image data into 
a structured form, facilitating accurate classification. The extracted features are essential for 
distinguishing between species and are categorized into shape descriptors, texture features, and 
thermal patterns. Shape descriptors quantify the geometric properties of the chelonian’s body, 
including measurements like area, perimeter, and circularity. Circularity, defined by the 
relationship between the area and the perimeter, helps distinguish species based on their physical 
structure. Since different chelonian species exhibit unique morphological characteristics, these 
shape descriptors serve as key differentiators. Texture features capture the surface details of the 
chelonian’s shell, providing valuable information about the shell’s patterns. These are derived 
using statistical techniques like the Gray-Level Co-occurrence Matrix (GLCM), which analyzes 
the spatial distribution of pixel intensities. Features such as contrast reflect the variation in texture, 
enabling the model to recognize species-specific shell patterns. Additionally, thermal patterns are 
captured using UAVs equipped with infrared sensors, providing insights into the body’s heat 
distribution. These patterns are particularly useful in detecting chelonians under varying 
environmental conditions, as their ectothermic nature causes their body temperature to reflect 
ambient conditions. Once features are extracted, the system classifies the image into specific 
chelonian species using Bayesian inference. This probabilistic approach calculates the likelihood 
of an image belonging to a particular species by combining observed features with prior 
knowledge. Bayes' theorem is employed to compute the posterior probability, which represents the 
likelihood of a species given the extracted features. This approach is beneficial as it updates prior 
probabilities with new observations, allowing the model to improve over time. Bayesian inference 
is particularly effective in handling uncertain and noisy data, which is common when working with 
UAV-captured images in dynamic environments. The model evaluates the posterior probabilities 
for all species and assigns the image to the species with the highest likelihood. This process is 
adaptive, meaning as more data is gathered, the model refines its predictions and improves 
classification accuracy. For object detection and localization, the "You Only Look Once" (YOLO) 
algorithm is employed due to its efficiency in real-time detection. YOLO formulates object 
detection as a regression task, predicting bounding box coordinates and class probabilities 
simultaneously. It divides the input image into a grid, where each cell predicts multiple bounding 
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boxes and their associated confidence scores. This method allows for rapid and accurate detection, 
even when multiple chelonians are present or partially occluded. YOLO’s single-pass architecture 
reduces computational complexity, making it suitable for processing large-scale UAV imagery. 
By integrating YOLO with Bayesian inference, the system achieves robust chelonian detection 
and classification. YOLO accurately identifies and localizes chelonians in images, while Bayesian 
inference enhances classification confidence by incorporating probabilistic reasoning. This 
combined framework provides a comprehensive solution for automated chelonian species 
detection, offering high accuracy and adaptability across diverse environments. 
 
4. SIMULATION OUTCOMES 
4.1 Turtles 

The size range of the six juvenile greens with satellite tags was 33.4 to 67.5 cm SCL (mean ± SD: 
45.7 ± 12.9 cm).The seven people who were monitored had masses ranging from 4.4 to 40.8 kg 
(16.0 ± 13.8 kg; Table 2). Two of the six satellite-tagged turtles were caught at night using dipnets, 
while the other four were caught throughout the day utilising tangled nets. 

4.2 Satellite observations 

We collected 286 PTT days and 1598 places from the six turtles who were satellite-tagged. At 
large, the days ranged from 27 to 62 days (47.7 ± 13.0 days). 44.8 to 60.9% of all turtle sites were 
kept for study after filtration by LC, trip speed, and terrain.  

4.3 Home range and mobility 

In both 2007 and 2008, we saw young green turtles regularly using coastal habitats close to the 
locations where they were captured and released (Fig. 3). Each turtle's estimated MCP area varied 
between 374.1 and 2060.1 km2 (101.3 to 184.8 km perimeter; Table 4). For 95% of the contour 
regions, the fixed KDEs varied between 24.6 and 371.0 km2 (mean 154.4 ± 136.1 km2). According 
to Table 3, the 50% contour areas varied from 5.0 to 54.5 km². The 3.1 km2 region that represented 
the junction of all turtles' 50% core regions (Fig. 3) was comparable in terms of spatial arrangement 
in 2007 and 2008. The percentage of movement pathways with greater mean squared distance 
(MSD) values, or p, was >98.0198 in every instance (Table 3). As a result, the satellite tracking 
data showed site fidelity. Turtles covered 387–2049 km in total (mean 1053.8 ± 641.8 km). 
However, as we are unable to verify linear transit, these travel speeds should be regarded as 
estimated swim speeds. Since swim speeds account for directional motions, which may not always 
be linear, travel speeds—that is, recorded linear distance over time—may not be equivalent to real 
swim speeds. 
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Table 3: Mydas Chelonia. Six young turtles in green colour from the southwestern coastal 
Swamps in Florida, USA, were tracked in 2007 and 2008 to determine their body sizes. 

SCL: horizontal duration of carapace from notches to tip; No. approved: places left behind 
after raw Argos information is filtered, as explained in "Materials and methodology. 

Turtle 
ID 

SCL 
(cm) 

Mass 
(kg) 

Capture 
Method 

Deployment 
Date 

Tracking 
Duration 

(days) 

Total 
Locations 

Logged 

Verified 
Locations 

(%) 

60812 34.2 4.9 Dip Net 
10 March 

2007 
53 92 48 (52.2) 

60815 41.3 9.2 Dip Net 
12 March 

2007 
45 27 16 (59.3) 

55342 45.1 15.6 
Tangle 

Net 
5 March 

2008 
65 534 245 (45.9) 

60819 36.8 6.4 
Tangle 

Net 
6 March 

2008 
58 152 81 (53.3) 

55340 69.2 42.5 
Tangle 

Net 
2 May 2008 50 595 312 (52.4) 

55341 55.7 23.8 
Tangle 

Net 
4 May 2008 30 263 138 (52.5) 
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Figure 3: Predictions of the kernel concentration and maximum convex polygon (MCP) for six 
young turtles in green (a–f) that were satellite-tracked in southwestern Florida's Everglades 

National Park in 2007 and 2008. MCPs are shown by dashed lines, while the Everglades border 
is indicated by strong lines. Each turtle's mean daily positions are shown by black dots when 

available. 
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Table 4: Chelonia mydas. In 2007 and 2008, six young green turtles were satellite-tracked in the 
southern coast Everglades of Florida using their home ranges and main activity regions. The 

home range was identified using MCP and KDE techniques. The contouring variable (hcv) used 
for KDE estimations for each turtle is given. One tortoise (ID 60589) lacked sufficient data for 

KDE estimations. In site-fidelity tests, p indicates the percentage of moving pathways with 
increased mean squared distance (MSD). 

Turtl
e ID 

Trackin
g Year 

Duratio
n (d) 

HCV 
50% 
(km²

) 

Track 
Contour 
Perimete

r (km) 

MC
P 

95% 
Area 
(km²

) 

MC
P 

Area 
(km²

) 

Site 
Fidelity 
Test (p) 

MS
D 

(R²) 
(km) 

Avg. 
MSD 

(R²) of 
Rando

m Paths 
(km) 

60812 2007 0.28 52 56.3 
379.

5 
142.

1 
>99.015

3 

97 
634.

2 

2 192 
741.6 

60815 2007 – 43 – – 
138.

4 
>98.122

1 

235 
281.

4 

1 473 
368.9 

55342 2008 0.23 63 20.5 
152.

3 
145.

6 
>99.045

7 

54 
890.

7 

2 785 
623.1 

60819 2008 0.22 65 8.2 57.1 
104.

9 
>99.031

6 

39 
552.

8 

1 210 
493.7 

55340 2008 0.55 49 6.1 28.9 
189.

7 
>99.067

8 

41 
371.

2 

2 243 
459.2 

55341 2008 0.34 30 30.2 
179.

4 
111.

3 
>99.012

4 

36 
798.

5 

1 102 
729.4 

We found no significant difference in the turtles' daily time spent near the shoreline compared to 
deeper or more expansive waters. The study also revealed no statistically significant variation in 
location patterns between daylight and nighttime, nor in their proximity to the water, for all six 
tracked turtles (p > 0.1): 
 

 ID no. 55340: t302 = 0.35, p = 0.756 
 

 ID no. 55341: t135 = 0.72, p = 0.496 
 

 ID no. 55342: t241 = –1.14, p = 0.248 
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 ID no. 60812: t15 = 0.29, p = 0.728 

 
 ID no. 60819: t60 = 1.72, p = 0.112 

 
Chi-squared analyses indicate that four out of six turtles tracked in 2008 spent a significant amount 
of time as in figure 4 and 5 within the ENP boundaries: 
 

 ID no. 55340: χ²₁ = 39.87, p < 0.0001 
 

 ID no. 55341: χ²₁ = 19.63, p < 0.0001 
 

 ID no. 55342: χ²₁ = 25.21, p < 0.0001 
 

 ID no. 60812: χ²₁ = 0.11, p = 0.752 

 
Figure 4: Satellite tracking of young green turtles in Everglades National Park (ENP), the 

southwest corner of Florida, revealed agreement of all 50% fixed kernels thicknesses (dark grey 
regions).  
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Figure 5: Metrics computation 
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Figure 6: Species figuring 

 

Figure 7: Green turtle returning view from satellite 
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4.4 Discussion 
We estimate Everglades juvenile green turtle core seen in figure 6 and 7 activity areas for the first 
time. In two years, all six individuals showed fidelity to the capture and release site, consistent 
with reports from other green turtle foraging grounds indicating juvenile affinity for marine algae 
patches (Ogden et al. 1983, Seminoff et al. 2002). The presence of these characteristics along the 
shore and in the Everglades may lead to more tiny juvenile green turtle groups.Our monitoring 
efforts identified home ranges and site fidelity for six adolescent green turtles in the Everglades, 
suggesting resident-type behaviour. The study suggests that creating a core usage area or home 
range might help juveniles obtain resources that are most beneficial for their development and 
sexual maturation (Limpus& Walter 1980, Limpus et al. 1994, Makowski et al. 2006).In this 
investigation, we found 286 total PTT days, far less than Seminoff et al. (2002)'s 728 but equivalent 
to Mendonça's (1983) 199-day study and Makowski et al.'s (2006) 120-day study. McClellan & 
Read (2009) found comparable tracking durations for young green turtles of the same size as 
Everglades turtles (Table 1). Our tracking durations are comparable to Renaud et al. (1995) and 
McClellan & Read (2009), who tracked 9 green turtles (29.1 to 47.9 cm SCL, 2.6 to 14.8 kg) in 
Texas, USA, for 14 to 58 days and 10 to 42.5 cm SCL in North Carolina, USA, for 17 to 154 days, 
respectively (Table 1). Compared to longer-duration investigations on adult sea turtles (Godley et 
al. 2008), our turtles had shorter tracking periods. Short tracking may indicate battery failure or 
tag loss. Juveniles may lose scutes and satellite tags faster than adults, resulting in premature 
transmission delays. Turtle interactions with habitat structures, such as vegetation or dead 
mangrove logs, may cause tag shedding, especially if juvenile turtles use these structures for 
protection or shelter. Further research using captive greens and tag attachment techniques, such to 
Seney et al. (2010) and Renaud et al. (1993), is needed to establish the best retention rates for 
juveniles throughout time. 
We found no significant differences in location quality or time between animals shortly after 
release and later during tracking, despite not testing for instrument effects. After releasing two 
tagged turtles (60589, 60591), we saw them eating at the study location within 24 to 48 hours, 
indicating minor tag impact. Watson & Granger (1998) discovered that a carapace-mounted 
satellite transmitter increased drag by 27-30% and decreased swimming speed by 11% in a model 
juvenile green turtle. Our investigation found that adolescent green turtles were eating and moving 
slowly, suggesting that their movements were not as significantly altered as indicated by Watson 
& Granger (1998). 
Previous satellite telemetry studies examining young greens' migration outside of Florida support 
these conclusions. According to Godley et al. (2003), two of the four youngsters tagged in coastal 
seas off Brazil behaved similarly to Everglades turtles, staying at the capture/release site for 
lengthy periods. Three turtles (A, B, and C) in the research were about the same size as ours, 
although two were followed for longer periods (96 and 197 days). In a study by Pelletier et al. 
(2003), two wild-caught green turtles in the Indian Ocean showed comparable size and release site 
fidelity as Recent McClellan & Read (2009) findings of juvenile greens in the Everglades matched 
our data in size, tracking duration, and net distances travelled per individual (Table 1). 
McClellan & Read (2009) found that summertime utilisation distributions (UDs) for North 
Carolina greens were 84.6 ± 48.3 km2 using satellite monitoring. 
Our estimate lies between the mean 50% core usage area (22.5 ± 22.1 km2) and the mean general 
use area (95% KDE; 154.4 ± 136.1 km2). The similarities in seasonal home ranges between 
mangrove (current research) and salt marsh (McClellan & Read 2009) habitats may indicate 
constraints for this size class of green turtles. 
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However, the short monitoring length in this research raises doubts about seasonal fluctuations in 
turtle habitat utilisation in ENP. Assess if summer tropical storms and hurricanes affect juvenile 
green turtle habitat-use patterns in this region. Storms may alter coastal morphology, cover, marine 
algae, and microhabitat characteristics due to high wave and wind energy. 
The combined 2007 and 2008 50% core usage regions (Fig. 3) have comparable geographic 
locations, indicating that the site's microhabitat traits may make it ideal for young greens as a 
foraging or refuge site. An acoustic monitoring investigation using fixed receivers along the 
coastline might provide extended tracking periods for individual turtles, revealing their seasonal 
use patterns. Future studies should investigate seasonal variations in habitat usage, particularly in 
locations where CERP initiatives are planned.Our study found no significant differences in 
juvenile green turtle habitat use between coastal and deeper water habitats. However, satellite 
telemetry may have prevented us from capturing finer movements reported by Ogden et al. (1983) 
and Mendonça (1983) in their studies of behaviour and ecology at other shallow-water neritic 
areas. Ogden et al. (1983) studied young greens' diel feeding habits in St. Croix, US Virgin Islands, 
using observations and acoustic tracking. 
In Florida, Mendonça (1983) found that green turtles ate seagrass flats in the morning and 
afternoon, then slept in deeper water throughout the day. Turtles in the Everglades may find food 
and resting spots in shallow coastal areas, while bigger predators like sharks await them in deeper 
habitats.  
 
Green turtles on the east coast of the US have been found to have small springtime home ranges, 
with individuals residing in the same coastal embayments or tidal creeks on consecutive days 
(Mendonça 1983, McClellan & Read 2009). Mendonça (1983) found that turtles monitored in an 
east coast Florida lagoon returned to their previous night's resting locations within 3 meters. Our 
findings indicate that Everglades juvenile greens exhibit strong site fidelity, particularly to tidal 
creeks and embankments along the mangrove coastline, regardless of daytime or nighttime satellite 
location distributions according to distance to shore. 
 
Animals commonly conduct area-restricted searches in locations with rich prey or resources, 
reducing travel pace and increasing turning frequency and angle (Turchin 1991). In contrast, 
animals in inappropriate habitats exhibit high transit speeds and minimal turning angles (Turchin 
1991). We observed small core activity areas, site fidelity, and overlap across juvenile sizes and 
years. Turtles also had slow travel speeds, similar to Seminoff& Jones (2006) (0.18 to 0.64 km h–
1). This research suggests that adolescent green turtles exhibit area-restricted search patterns and 
behaviour similar to resident turtles.Our research found young green turtles using habitat in 
southwest Florida mangroves, previously unrecognised as vital for this endangered species. This 
work contributes to the worldwide data gap on young green sea turtles by identifying potential 
refuges and developmental habitats in the USA. Long-term surveillance of turtle residency habits 
over many years may clarify the significance of this research location for other young greens. 
 
Our research highlights the need of considering the effects of Everglades restoration on young 
green turtles and their environment.Restoration of huge coastal regions near the Everglades may 
impact green turtles' utilisation of coastal seagrass and marine algal resources downstream of 
construction operations.Marine turtle aggregations in the coastal zone may be affected by 
restoration activities. This will help determine how changes in hydrology impact juvenile green 
turtles and their food sources, such as seagrass and marine algae. This research might educate 
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decision-makers about the impact of freshwater release patterns on the coastal zone and give 
valuable data for the Atlantic Green Turtle Recovery Plan (NMFS & USFWS 1991). The US Fish 
and Wildlife Service and the National Marine Fisheries Service recognise the importance of 
identifying Chelonia mydas distribution and seasonal movements in the marine environment for 
protecting the US Atlantic green turtle population (NMFS & USFWS 1991). Restoring coastal 
regions of the Everglades, which might be vital habitats for adolescent green turtles, should include 
the impact on foraging supplies. Conservation of sea turtles requires understanding their spatial 
patterns of habitat use and how they change between life stages. 
 
5. Conclusion 
The proposed methodology for chelonian species detection integrates advanced image processing 
and machine learning techniques, enhancing accuracy and efficiency. Through a comprehensive 
pipeline, the process begins with image acquisition via UAVs equipped with thermal and RGB 
sensors, ensuring high-resolution data collection across diverse environments. Preprocessing 
methods standardize images by addressing noise, illumination variability, and geometric 
distortions, ensuring consistent input quality. Feature extraction is a critical step, capturing key 
characteristics like shape descriptors (perimeter, area, circularity), texture features (using GLCM), 
and thermal patterns. These extracted features serve as a foundation for species classification. The 
Bayesian Inference model leverages probabilistic reasoning to accurately classify chelonian 
species by calculating the posterior probability of each class. This statistical approach ensures 
robustness by incorporating prior knowledge and observed feature likelihoods. For object 
detection, the YOLO algorithm provides real-time identification and localization of chelonians, 
outputting bounding box coordinates and confidence scores. YOLO’s efficiency and speed make 
it ideal for processing large datasets from UAV imagery. This multi-faceted approach improves 
species recognition and allows for dynamic monitoring of chelonian populations. The proposed 
framework's primary advantages include enhanced classification accuracy, real-time detection 
capabilities, and adaptability to different environmental conditions. However, limitations include 
reliance on UAVs for data collection and potential challenges in detecting submerged or 
camouflaged turtles. Future work could explore deep learning models for improved feature 
extraction, integration of multi-sensor data fusion, and real-time deployment in marine 
conservation efforts. This methodology represents a significant advancement in automated wildlife 
monitoring, supporting ecological research and conservation initiatives. 
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