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Abstract: 
Background: Clinical studies, such as randomized controlled trials, typically measure response 
and key event incidence throughout the follow-up period. Patients may skip certain assessment 
visits due to lack of efficacy or safety concerns. Missing data being a common problem in 
statistical literature, approaches to handle it may still result in biased knowledge discovery. 
Analysis and interpretation become problematic when missing data percentage is substantial. 
Additionally, compliance to planned treatment paradigm could also be a problem as patients might 
not adhere to prescribed treatment regimen. Twin consequences of non-compliance and missing 
data are rarely addressed simultaneously, even though numerous innovative techniques to handle 
non-compliance or missing response in randomized trials have been proposed.  
Materials and Methods: This article attempted to address the missing response by deploying 2 
stage modelling for analysing longitudinal response using time-varying compliance regression 
residual. Given the variation in longitudinal outcomes, accounting for the dependency between 
continuous response and treatment compliance can be informative, especially for imputing missing 
data. EM algorithm is used in this process and compared with/without 2 stage modelling. 
Simulation study is created with missing response and non-compliance to assess the effectiveness 
of proposed estimators in scenarios, including both continuous and binary treatment compliance. 
Results: Method was applied on simulated data with varying correlation and multiple missing 
scenarios in both the cases. The results were compared using the absolute bias and mean squared 
error (MSE). 
Conclusions: The MSE was smallest for the proposed method compared to without joint 
modelling and no imputation analysis, indicating better results with the proposed method. 
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INTRODUCTION: 
Whenever response missingness is observed in randomized controlled trials (RCT) with 
interventional, they are imputed using some conservative approach but doesn’t consider the 
compliance of the treatment. Adherence to study protocol is necessary for analysis of RCT using 
standard methodologies, which includes obtaining response from all participants, to have unbiased 
estimates. In an RCT with two arms, non-compliance or non-adherence to the treatment is 
observed when subjects don’t follow treatment regimen as prescribed or discontinue treatment 
before course completion. Nonresponse happens when required response measurement is missing. 
If we only include non-missing observations in the analysis, then we typically end up with a 
smaller sample size. It will affect the power, variability and might produce biased results. 
Not all missing values exhibit the same behaviour and mechanism to which they are broadly 
categorized into 3 categories by Rubin and Little1 as; 

a. “Missing completely at random (MCAR)”:  
Probability of missing assessment does not depend on the observed values.  

b. “Missing at random (MAR)”:  

Probability of missing assessment depends on the observed values.  

c. “Not missing at random (NMAR)”:  
d. Probability of missing assessment depends on observed as well as unobserved values. 

 

MATERIAL AND METHODS: 
Notations and Distribution: Let 𝑌  , 𝐶 denote the response and compliance from subject ‘i’ for 
given time-point ‘j’, where i = 1, · · ·, n and j = 1, · · ·, t in longitudinal setting. Define the vector 
of response as 𝑌 = (𝑌ଵ , 𝑌ଶ, … . , 𝑌௧)′ and the vector of compliance as 𝐶 = (𝐶ଵ, 𝐶ଶ, … . , 𝐶௧)′ . 
The response data follows a multivariate gaussian distribution. An identity function is used to link 
the expected continuous response 𝐸(𝑌 ) = 𝜇 to the systematic component 𝑋′𝛽ଶ  where 𝑋′ is 
the matrix of independent variables and 𝛽ଶ is the vector of corresponding coefficients. The 
longitudinal compliance variable is assumed to follow longitudinal Beta distribution when 
compliance is continuous and 0 ≤ 𝐶 ≤ 1 or binomial distribution when compliance is binary and 
Pc = p(𝐶 ≤  c ) is linked to a linear function of covariates 𝑋′𝛽ଵ  via a traditional logit function.  
In a clinical trial we usually end up having some of the response data missing. This missing data 
would impact the power of the study and may lead to biased results. Since the response data has 
missing values, we propose a two-stage modelling2 framework to address this issue. In this two-
stage modelling framework, the first stage involves fitting a longitudinal beta/binomial regression 
to time-varying treatment compliance, and the second stage uses the residuals from this regression 
as covariate in a regression model for the longitudinal continuous response.  
 
Stage 1: Longitudinal Beta/Binomial Regression on time-varying treatment compliance: The 
first stage models the time-varying compliance 𝐶 using beta regression13,14.  
 𝐿𝑜𝑔𝑖𝑡(𝑃) = 𝑋′𝛽ଵ + 𝜀ଵ Equation 1 

 
𝑋′ represents a vector of covariates that affect 𝐶 such as baseline covariates, time effects, or 
other subject-specific covariates and 𝜀ଵ~𝑁(0, 𝜎ଵ

ଶ) is the error term. Once the longitudinal 
beta/binomial regression is fit, compute the residuals Rij for each time point and subject as the 
difference between the observed value 𝐶 and the predicted value 𝐶పఫ

 : 
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𝑅 = 𝐶 −  𝐶పఫ
  

Where 𝐶పఫ
  is the predicted mean from the beta regression model. 

 
Stage 2: Regression on Longitudinal Continuous Response Data 
In the second stage, we model 𝑌  using the residuals 𝑅 from the first stage, along with any 
additional covariates 𝑋′   (e.g., time, subject-specific covariates). 
The model for 𝑌  can be formulated as a linear mixed-effects model to account for repeated 
measurements on the same subjects: 
 𝑌 = 𝑋′𝛽ଶ + 𝑅𝛽ଷ + 𝑢 +  𝜀ଶ Equation 2 

 
where: 

 𝑅 are the residuals from the longitudinal beta regression (Stage 1). 
 𝑋′ are additional covariates for the longitudinal continuous response. 
 𝛽ଶ & 𝛽ଷ are the vector of corresponding coefficients 
 𝑢 is random effect for subject ‘i’ to account for within-subject correlation over time. 
 𝜀ଶ~𝑁(0, 𝜎ଶ

ଶ) is the error term. 
 

Full Likelihood 
The full likelihood of this two-stage model can be written as: 

𝐿(𝑌, 𝐶; 𝛽ଵ, 𝛽ଶ, 𝛽ଷ, 𝑢 , 𝜎ଶ) = ∏ ∏ ൣ𝑓௧൫𝐶ห𝑋′, 𝛽ଵ) × 𝑓ே൫𝑌ห𝑋′, 𝑅 , 𝛽ଶ, 𝛽ଷ, 𝑢 , 𝜎ଶ)൧௧
ୀଵ


ୀଵ  

  
where: 
 𝑓௧൫𝐶ห𝑋′, 𝛽ଵ) is the likelihood of the beta regression (Stage 1). 
 𝑓ே൫𝑌ห𝑋′, 𝑅 , 𝛽ଶ, 𝛽ଷ, 𝑢 , 𝜎ଶ) is the likelihood of the linear mixed-effects model for 

the longitudinal continuous response (Stage 2). 
The non-response and treatment nonadherence will be first addressed independently using EM 
algorithm1,3 and then we further deploy the 2-stage modelling to further refine the estimates of the 
response. 

EM algorithm 
The EM algorithm1,3 is a computational technique in the maximum likelihood estimate (MLE) 
computation for circumstances when the complexities in computing the MLE are caused by 
incomplete observation in the data due to MAR, where parameters are separate for observation 
and mechanism of missing data allowing to ignore the missing data mechanism. 
Let the complete response be partitioned between observed response and missing response as  

Y = (𝑌௦, 𝑌௦) 
The log-likelihood for complete set of data is given by, 

𝐿(𝜃) = log[𝑙(𝜃; 𝑌௦, 𝑌௦ )] =  𝑙𝑜𝑔[𝑓(𝑌௦, 𝑌௦;  𝜃)] , 
The log-likelihood of the marginal or incomplete data is based on y alone and is given by,  

𝐿௬್ೞ
(𝜃) = log[𝑙(𝜃; 𝑌௦)] =  𝑙𝑜𝑔[𝑓(𝑌௦;  𝜃)]  

We wish to maximize 𝐿௬್ೞ
(𝜃) in 𝜃 but 𝐿௬್ೞ

(𝜃) is typically quite unpleasant: 
 

𝐿௬್ೞ
(𝜃) =  𝑙𝑜𝑔 න 𝑓(𝑌௦, 𝑌௦;  𝜃)𝑑𝑦௦ Equation 1 
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The EM algorithm is a method that aims at maximizing Equation 3 iteratively while looping 
between the 2 steps, the E-step that is shown below in Equation 4 and the M-step in the Equation 
(5) until convergence or a pre-defined threshold met. The E-step uses the current estimated 
parameter to find expectation for the complete log-likelihood of the data while the M-step makes 
use of the data updated in E-step to derive the MLE for the parameters. 
The expectation step represented here as Q function for the E-step is given by, 
 

𝑄൫𝜃/𝜃(ିଵ)൯ = 𝐸ఏ(షభ) ൬𝑙𝑜𝑔
𝑓(𝑌௦, 𝑌௦;  𝜃)

𝑓(𝑌௦, 𝑌௦;  𝜃(ିଵ))
|𝑌௦൰

=  න 𝑙𝑜𝑔
𝑓(𝑌௦, 𝑌௦;  𝜃)

𝑓(𝑌௦, 𝑌௦;  𝜃(ିଵ))
𝑓(𝑌௦| 𝑌௦;  𝜃(ିଵ))𝑑𝑦௦ 

 
Equation 2 

The M-step maximizes 𝑄൫𝜃/𝜃(ିଵ)൯ in 𝜃 for for fixed 𝜃(ିଵ), i.e., it calculates, 
 

𝜃() = 𝑎𝑟𝑔 𝑚𝑎𝑥ఏ 𝑄൫𝜃/𝜃(ିଵ)൯ Equation 3 

Addressing missingness in compliance 
To address missingness in compliance we would partition it as the observed compliance and 
missing compliance data as  

𝐶 = (𝐶௦, 𝐶௦) 
𝑓(𝐶௦, 𝐶௦/𝛹)  =  𝑓(𝐶௦/𝐶௦, 𝛹୭ୠୱ)𝑓(𝐶௦/𝛹୫୧ୱ) , 

Where 𝛹 is the vector of parameters for compliance representing 𝛽ଵ from Equation 1. 

The expectation step represented here as R function for the E-step is given by  
 

𝑅൫𝛹/𝛹(ିଵ)൯ = 𝐸అ(షభ) ቆ𝑙𝑜𝑔
𝑓(𝐶௦,  𝐶௦;  𝛹)

𝑓(𝐶௦,  𝐶௦;  𝛹(ିଵ))
|𝐶௦ቇ

=  න 𝑙𝑜𝑔
𝑓(𝐶௦,  𝐶௦;  𝛹)

𝑓(𝐶௦,  𝐶௦;  𝛹(ିଵ))
𝑓(𝐶௦| 𝐶௦;  𝛹(ିଵ))𝑑𝑐௦ 

Equation 4 

The M-step will maximize the 𝑅൫𝛹/𝛹(ିଵ)൯ in 𝛹 for fixed 𝛹(ିଵ), i.e., it calculates, 
 

𝛹() = 𝑎𝑟𝑔 𝑚𝑎𝑥అ 𝑅൫𝛹/𝛹(ିଵ)൯ Equation 5 

 
Here again we iterate between E-step defined in equation 6 and M-step as defined in equation 7 
to obtain the optimum estimates until convergence or pre-defined threshold met.   
The missingness in compliance will be following ‘MAR’ mechanism. We roughly consider 15% 
of the compliance data missing. This includes intermittent missing as well as missing due to 
discontinuation or lost to follow-up. We evaluate 2 cases as below. 
1) Longitudinal continuous compliance: Details under Creating compliance section. 
2) Longitudinal binary compliance: Here the compliance is generated as in equation 8 and after 

influencing the response with the continuous compliance the compliance data is made binary 
with 70% or above as compliant or event met (1) and below 70% as non-compliant or event 
not met (0). 

Longitudinal compliance was used in modelling case 1 whereas for case 2 longitudinal binary 
compliance was converted to univariate proportion between (0, 1) depending on number of visits 
where subject met the compliant criteria.  
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Simulation with non-response and non-compliance 
We started with sample size of 554 subjects (227 subjects per arm) for obtaining treatment 
difference of around 1 unit at last visit to be simulated from 4 time point Multivariate Gaussian 
distribution using sample size derivation for longitudinal study4,5. The correlation structure used 
was Autoregressive of order 1 (AR1) with three values for ρ (0.4, 0.6, 0.8) the most reflected in 
RCT, but other correlation structures can be used as well. Artificial missingness was introduced in 
the data to observe behaviour of the methods. Missingness introduced in simulated data was 
roughly 5%, 10%, 15% and 20% using MAR approach.  
Simulation and analysis were repeated 1000 times to reflect robustness of the methods.  

Introducing artificial missingness in the data 
For simulation purpose we considered making the in data using MAR mechanism. 
For "MAR" mechanism, first we calculate weighted sum scores. Weighted sum scores are a 
linear combination of the variables. We will use the method as explained in Schouten and Vink, 
20186 to make data missing with MAR mechanism of missingness. 
The process requires a complete data with n subjects having responses at m time-points. The 
process results in multiple sub datasets with either complete or incomplete subsets. All these 
sub-datasets are then combined to obtain a version from original dataset that contains pre-
specified missingness in data. 
The process starts with determining required missing data patterns. For example, lost to follow-
up case from visit 4 in study with 5 time-points, subjects will not be missing for first 3 time-
points and will be missing for last 2 time-points. 
First random division of original complete dataset into k sub-datasets takes place on basis of k 
missing data patterns. Size for these sub-datasets may not be same. For instance, if we assign 
the frequency value of one-third for one of the missing data patterns and two-third for another 
missing data pattern, this then will result in one-third cases becoming part of sub-dataset 1 and 
two-third cases becoming part of sub-dataset 2. These subjects in sub-dataset 1 will become the 
candidates for first missing data pattern. The frequency values should sum-up to 1 so that each 
participant falls in one of the sub-datasets. Up till here we are just preparing the subset of 
candidates falling in each of the k sub-datasets pertaining to a particular missing pattern. We 
will then calculate weighted sum score (SSw) for each subject. 
The sum of the weighted score of subject ‘i' is calculated using the following equation: 

𝑆𝑆𝑤 = 𝑤𝑡ଵ. 𝑌ଵ +  𝑤𝑡ଶ. 𝑌ଶ + ⋯ + 𝑤𝑡௧. 𝑌௧ , 
where {𝑌ଵ, 𝑌ଶ, . . . . , 𝑌௧ }  are responses of subject ‘i’ at time-points 1,2, …, t and 
{𝑤𝑡ଵ, 𝑤𝑡ଶ, . . . . , 𝑤𝑡௧ } are corresponding weights that are pre-specified. SSw will be largely 
influenced by variables with higher weights as compared to variables with low weights. Weights 
can be positive or negative based on relative importance of the variables. 
Since under MAR mechanism the missing depends on observed values, weights will be zero 
corresponding to values that will be made incomplete. This will differ for each pattern. Figure 1 
shows schematic overview about amputation procedure for introducing missingness in data. 
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Figure 1 Schematic overview of procedure for amputation in the multivariate/longitudinal data 

For given variable based on SSw each subject will be assigned the probability of becoming non-
responder. To distribute these probabilities, left skewed logistic distribution function is applied on 
SSw (Figure 2). For different patterns of missing data differently skewed logistic distribution 
function can be used. 

Logistic distribution function used for obtaining the probability of missingness 
Logit is the log of odds given by  

𝑙𝑜𝑔𝑖𝑡(𝑝) = log ൬
𝑝

1 − 𝑝
൰ , 𝑤𝑖𝑡ℎ 0 < 𝑝 < 1 

logistic function is obtained by equating logit to possible regressors set 𝑥 and solving for 𝑝. 

𝑝 =
𝑒𝑥𝑝 (𝑥)

1 + 𝑒𝑥𝑝 (𝑥)
 

We used left skewed logistic function for creating missingness in complete data. This resembles 
more with real scenario where patient’s response is more likely to be missing as patient progresses 
in the trial rather at the start. So low probability of missing at initial time-point and high probability 
of having response missing at study end. 
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Figure 2 Standard and heavy tailed logistic distribution functions 
Creating Compliance 
Compliance is constructed as function of median compliance, 10th percentile compliance and 
compliance covariance matrix7. Noncompliance is assumed to alter responses by “regressing” 
them towards baseline values. 
True compliance (C(g)) for group ‘g’ will be discrete if we count actual doses taken during study 
period but if we consider the proportions such as 28/28, 26/28, etc., then the value C(g) can be seen 
as continuous approximations.  
True compliance might be actually reflecting variety of different behaviors including dose timing, 
food compliance and concomitant medications taken. In all this type of cases using continuous 
distribution for C(g) has better justification. 
We create compliance as continuous assessment [0, 1] scale, where 1 would denote perfect or 
100% compliance and 0 denotes 0% or no compliance. 
Our initial inputs are 10th percentile of compliance and median compliance and using median 
as 0.9, and 10th percentile as 0.3, we say that 50% of the patients are 90% or better compliant, and 
nearly 90% of the patients are 30% or better compliant.  
Since there is subject-specific effect as well as carryover effect for compliance data, it makes more 
sense to use CS (compound symmetry) + AR1 (Auto regressive of order 1) model. 
We start by generating Zij (‘i’ denotes patient, ‘j’ denotes time-point) from multivariate normal 
distribution with covariance structure as CS + AR(1) and then using pre-specified median 
compliance and 10th percentile of compliance to generate proportions by using the transformation 
of normal probability shown in equation 8 below. 
 
 𝐶

()
 = 𝜙൫𝑎() +  𝑏()𝑍൯ Equation 6 
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𝑊ℎ𝑒𝑟𝑒, 𝑎() =  𝜙ିଵ ቀ𝐶.ହ
()

ቁ  &  𝑏() =  
𝜙ିଵ ቀ𝐶.ଵ

()
ቁ −  𝜙ିଵ ቀ𝐶.ହ

()
ቁ

𝜙ିଵ ቀ𝐶.ଵ
()

ቁ
 

𝐶
()denotes compliance rate for ith subject at jth time-point for group g, 𝜙 denotes Z-distribution 

value and 𝜙ିଵ denotes area under Z-distribution curve for given point. 
Since noncompliance is expected to influence treatment response, below equation is used to 
transform responses towards baseline values. 
 
 𝑦

()ᇱ
⃪ 𝑦

()
+ 𝐶

()
(𝑦

()
−  𝑦

()
)  

 

where 𝐶
() denotes “compliance rate” and will lie between 0 and 1. 

𝑦
()denotes observation from ith subject in gth group at jth time-point and 𝑦

()denotes observation 
from ith subject in gth group at baseline. 

The model and the likelihood 
For modelling the response, a linear mixed effects model for repeated measures was fitted5. 
Kenward-roger method was used to estimate denominator degrees of freedom. The aim was to 
estimate treatment effect against comparator and hence 2 treatments parallel arm design setting 
was used. The imputation was done separately in each arm.  
For equation 1 compliance was fitted against Drug, time, Drug x time interaction and baseline 
compliance as covariates and for equation 2 the covariates for response included treatment given, 
time of response assessment, treatment-by-time interaction, residual from the equation 1 and 
baseline response. 
We assumed AR(1) type of correlation structure for creating responses in simulated dataset but 
while analyzing no assumption on variance-covariance was made and hence unstructured variance-
covariance was used. 
The simulation was repeated 1000 times and each of these datasets were analyzed separately and 
results from each dataset were pooled using Rubin's rule8 as follows: 
 

𝑃𝑜𝑜𝑙𝑒𝑑 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 �̅�  =
∑ 𝜃


ୀଵ

m
 , 𝑊ℎ𝑒𝑟𝑒 𝜃  𝑖𝑠 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 𝑓𝑟𝑜𝑚 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛  

𝑃𝑜𝑜𝑙𝑒𝑑 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑒𝑟𝑟𝑜𝑟 = ඨ𝑉௪ + ൬1 +
1

𝑚
൰ 𝑉,   

𝑊ℎ𝑒𝑟𝑒 𝑉௪ 𝑖𝑠 𝑚𝑒𝑎𝑛 𝑜𝑓 𝑠𝑞𝑢𝑎𝑟𝑒𝑑 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑆𝐸′𝑠 𝑎𝑛𝑑 𝑉 =
∑ (𝜃 −  �̅�)ଶ

ୀଵ

m − 1
 

 
Heatmap shown in Figure 3 gives the visualization about deployed missing pattern. 



Chelonian Conservation and Biology 
https://www.acgpublishing.com/ 

2002 

MODELLING RESPONSE WITH TIME-VARYING COMPLIANCE IN LONGITUDINAL DATA: A SIMULATION STUDY WITH TWO-
STAGE FRAMEWORK USING COMPLIANCE REGRESSION RESIDUALS IN CLINICAL TRIALS  

 

 

 
Figure 3 Missing pattern and the Missingness in the rows in one of the simulated data 

 

RESULTS: 

Table 1: Simulation results with both response and compliance as continuous outcome 

 
  2 Stage modelling  Response imputation 

with EM 
Without imputation 

Correlatio
n 

Missin
g% 

Estimate (SE) 
Absolu
te Bias 

Estimate (SE) 
Absolute 
Bias 

Estimate (SE)
Absolute 
Bias 

0.4 

10 
0.9468(0.2602) 

0.001
2 0.9314(0.26) 0.0143 

0.9299(0.2684
) 0.0158 

20 
0.9464(0.2606) 

0.000
8 0.9314(0.2605) 0.0143 

0.9269(0.2783
) 0.0187 

30 
0.9466(0.261) 0.001 0.9317(0.2609) 0.014 

0.9232(0.2895
) 0.0225 

40 
0.9463(0.2614) 

0.000
6 0.9307(0.2613) 0.0149 

0.9179(0.3018
) 0.0278 

0.6 

10 
0.9187(0.2341) 

0.001
7 0.9427(0.2334) 0.0223 0.952(0.2411) 0.0316 

20 
0.9183(0.2351) 

0.002
1 0.9389(0.2345) 0.0185 

0.9578(0.2511
) 0.0374 

30 
0.9213(0.2357) 

0.000
8 0.9388(0.2353) 0.0183 

0.9621(0.2622
) 0.0416 

40 
0.9243(0.236) 

0.003
9 0.9393(0.2357) 0.0189 

0.9648(0.2741
) 0.0444 

0.8 10 
0.9425(0.2644) 

0.003
1 0.9007(0.2598) 0.0388 0.8942(0.268) 0.0453 
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20 
0.939(0.2648) 

0.000
5 0.8991(0.2604) 0.0404 

0.8886(0.2781
) 0.0508 

30 
0.9423(0.2653) 

0.002
8 0.9046(0.2611) 0.0349 

0.8849(0.2896
) 0.0545 

40 
0.9451(0.2659) 

0.005
7 0.9092(0.262) 0.0303 

0.8801(0.3022
) 0.0593 

 
Table 2: Simulation results with continuous response and binary compliance outcome 

 
  2 Stage modelling  Response imputation Without imputation 
Correlatio
n 

Missin
g% 

Estimate (SE) 
Absolu
te Bias 

Estimate (SE) 
Absolute 
Bias 

Estimate (SE)
Absolute 
Bias 

0.4 

10 
0.9451(0.2614) 

0.000
5 0.9451(0.2604) 0.0005 

0.9435(0.2688
) 0.0021 

20 
0.9466(0.2618) 

0.000
9 0.9466(0.2609) 0.0009 

0.9415(0.2788
) 0.0041 

30 
0.9464(0.2621) 

0.000
8 0.9464(0.2612) 0.0008 0.9391(0.29) 0.0066 

40 
0.9453(0.2626) 

0.000
3 0.9453(0.2617) 0.0003 0.936(0.3023) 0.0096 

0.6 

10 
0.9231(0.2342) 

0.002
6 0.9231(0.2338) 0.0026 0.931(0.2416) 0.0105 

20 
0.9214(0.2351) 

0.000
9 0.9214(0.2348) 0.0009 

0.9383(0.2516
) 0.0179 

30 
0.9283(0.2357) 

0.007
9 0.9283(0.2355) 0.0079 

0.9444(0.2626
) 0.024 

40 
0.9319(0.2361) 

0.011
4 0.9319(0.2359) 0.0114 

0.9487(0.2745
) 0.0282 

0.8 

10 
0.9395(0.2657) 

0.000
1 0.9395(0.2614) 0.0001 

0.9365(0.2698
) 0.003 

20 
0.9378(0.2661) 

0.001
7 0.9378(0.2621) 0.0017 0.9327(0.28) 0.0068 

30 
0.9365(0.2666) 

0.002
9 0.9365(0.2627) 0.0029 

0.9299(0.2915
) 0.0096 

40 
0.94(0.2673) 

0.000
5 0.94(0.2635) 0.0005 

0.9266(0.3042
) 0.0128 

 
Pooled estimates from simulated studies are presented in Table 1 & Table 2 after applying the 
proposed method and with standard method of imputation without joint modelling. Additionally, 
the tables also present outcomes from analysis of observed cases without imputation which in 
current simulation environment can be a useful benchmark to check against induced bias due to 
missing data. We have presented results with different percentage of missingness in dataset 
ranging from 10% to 40% having moderate to high correlation (0.4, 0.6 and 0.8). All estimates are 
generated assuming ‘MAR’ mechanism. Table 1 provides results when responses are continuous 
longitudinal as well as compliance is continuous longitudinal whereas Table 2 provides results 
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when responses are continuous longitudinal, but compliance is longitudinal binary. The MSE is 
comprised of both the components, variance and the squared bias. The aggregated standard error 
was calculated using Rubin’s rule.  
Under all correlation types with continuous response and continuous compliance, our proposed 
method produces estimates with lower MSE and more than 90% lower bias when compared to 
analysis without imputation or analysis with imputation and without 2 stage modelling (Table 1). 
With respect to data with continuous response and binary compliance we did not notice any kind 
of improvement as compared to Imputation without 2 stage modelling. Though they both were 
better than no imputation method and reduced the bias more than 70% as compared to analysis 
without imputation. No improvement over Imputation without 2 stage modelling might be due to 
high threshold set for making the compliance data binary(>70%) (Table 2). 
 

DISCUSSION: 
Performance of EM algorithm along with joint modelling provides better estimates as compared 
to EM algorithm alone and further estimation is much better as compared to no imputation with 
respect to reducing the bias as seen in Table 1 and Table 2 for with differently correlated data as 
well as for different percentage of missingness in the data.  
We found estimates from proposed techniques are nearer to population parameter than estimates 
from non-imputed data. Some interesting conclusions have arisen out of the analysis. As results 
improve using treatment compliance effect into the model, it indicates compliance can play a 
significant role in imputing missing observations for obtaining better estimates.   
It’s quite evident from results that presence of missing data, has high bias, and one must use 
appropriate missing data handling technique to reduce bias. We in our research have only 
considered case of continuous response, further exploration to see performance of method in other 
types of response data might be required. 
Our proposed technique is to use EM algorithm and then improvise it with 2 stage modelling, 
another alternative to this would be to use Multiple imputation (MI) and then improvise it with 2 
stage modelling. In both cases we found that estimates from our proposed methods are closer to 
assumed population parameter than estimates from non-imputed data. But to reach convergence, 
repetition required for EM algorithm in cases with large percentage of missingness is more than 
that of MI. This could be overcome by replacing M-step of EM algorithm with one step Newton–
Raphson9 to speed the convergence. 
Also, with respect to computational time, standard EM algorithm turns out to be quite faster as 
compared to MI. Time taken by MI method is around fivefold more than EM algorithm when tried 
for an imputation using MI with 10 copies of datasets at each repetition.  
There are certain criticisms for MI based on computing and analysis time. For e.g., it is costlier to 
analyze 10 sets of data as compared to one analysis. Similar critical assessment made by Fay10 was 
that the use of MI should be in large and public-use datasets where individual who is imputing 
data and one who is analyzing should be separate which is also addressed by Meng11.  Rubin12 also 
made a note that model used in generating MI datasets should have all variables that would likely 
be used in subsequent analyses. 
Since computations are done on simulated data, no specific data are associated with this article. 
All computations are done using ‘R-4.2.1’ software, codes can be obtained upon request to authors. 
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