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Abstract 

Deep learning techniques have the potential to significantly improve healthcare, especially in 
areas where medical imaging is used for diagnosis, prognosis, and treatment choices. The most 
advanced deep learning models available today for radiological applications only take into 
account pixel-value data; they do not take into account data that provides clinical context. In 
actuality, however, doctors are able to interpret imaging results in the proper clinical context 
thanks to relevant and accurate non-imaging data based on the clinical history and laboratory 
data. These results in increased diagnostic accuracy, informed clinical decision making, and 
better patient outcomes. Medical imaging pixel-based models need to be able to process 
contextual data from electronic health records (EHR) in addition to pixel data in order to 
accomplish a comparable aim utilizing deep learning. In this study, we thoroughly analyze the 
medical data fusion literature produced between 2012 and 2020 and discuss various data fusion 
strategies that can be used to merge medical imaging with EHR. We performed a thorough 
search for original research publications using deep learning to fuse multimodality data on 
PubMed and Scopus. We analyzed 985 studies in all, and we took data out of 17 publications. 
We present current information, highlight significant findings, and offer implementation advice 
through this systematic review, which can be used as a reference by researchers who are 
interested in using multimodal fusion in medical imaging. 

Keywords: Deep learning techniques, electronic health records (EHR), medical imaging, review, 
clinical decision.  

1. Introduction 

The synthesis of information and data from several sources is crucial to the practice of 
modern medicine. These sources include structured laboratory data, unstructured narrative data, 
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audio or observational data, and imaging pixel data. This is especially true when interpreting 
medical images, as making diagnoses frequently requires a thorough understanding of the 
clinical situation. For instance, it has been frequently demonstrated that a referring provider's 
performance and clinical utility are negatively impacted when they are unable to access clinical 
and laboratory data during picture interpretation1,2. The majority of radiologists (87%) who 
responded to a survey said that clinical information significantly affected interpretation3. 
Radiology is not the only imaging-based medical specialty that depends on clinical context for 
accurate image interpretation; several other imaging-based disciplines, including pathology, 
ophthalmology, and dermatology, also use this information to inform their image interpretation 
practices4,5,6. Physicians can interpret imaging results in the appropriate clinical context with 
the help of pertinent and accurate information about the patient's past medical history and current 
symptoms. This helps the physicians make a more relevant differential diagnosis and produces a 
report that is more useful to them and the patient. 

There are an increasing number of radiological imaging exams in the present digital era. An 
average radiologist may need to interpret an image every 3.4 seconds during an 8-hour workday 
in order to fulfill this increasing workload demand, which raises the risk of burnout, weariness, 
and increased error rates7. The potential for effective automated systems to either supplement or 
relieve overworked physicians of cognitive effort is driving the proliferation of deep learning in 
the healthcare industry8,9,10. Medical images are frequently subjected to convolutional neural 
networks (CNNs), a type of deep learning that has shown to be highly successful in image 
recognition and classification tasks. Chest X-rays, skin cancer, and diabetic retinopathy are 
among the early medical images that CNNs were used to analyze11,12,13,14,15,16,17, and 18. 
Nevertheless, these models may eventually restrict practical translation because they only take 
into account the pixel data as a single channel for input and are unable to contextualize additional 
clinical information as would be done in medical practice.  

For instance, numerous researchers have trained deep learning models for automated 
detection and categorization of diseases on chest X-rays, achieving the seemingly "simple" job of 
recognizing pneumonia on a chest radiograph19,20. However, these applications may ultimately 
have minimal influence on clinical practice in the absence of clinical context, such as patient 
history, principal complaint, previous diagnoses, and test data. Even while the imaging 
characteristics on chest X-rays consistent with pneumonia can typically distinguish it from other 
diseases, the findings are nonspecific, and a complete diagnosis necessitates the context of 
laboratory and clinical data. That is to say, a chest X-ray finding that suggests pneumonia would 
be accurate in a patient who has a fever and an elevated white blood cell count, but in a different 
patient who does not have those supporting laboratory values and clinical characteristics, the 
same imaging finding might instead indicate atelectasis, pulmonary edema, or even lung cancer.  

Clinical context, usually in the form of organized and unstructured clinical data from the 
electronic health record (EHR), is essential for precise and clinically meaningful medical 
imaging interpretation. There are innumerable examples of this throughout various medical 
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fields. Similar to human doctors, more clinically relevant and higher-performing models may 
result from automated detection and classification systems that can effectively combine clinical 
data from the EHR, such as patient demographics, past diagnoses, and laboratory results, with 
medical imaging data. 

2. Multimodal deep learning models 

Applications outside of medicine, such autonomous driving and video categorization, have 
seen success using multimodal deep learning models, which are able to assimilate pixel input 
along with other data types (fusion). For instance, a multimodal fusion detection system for 
autonomous cars is able to achieve notably higher accuracy (3.7% improvement) than a single-
modal CNN detection model21 by combining visual features from cameras with data from Light 
Detection and Ranging (LiDAR) sensors. Comparably, a multimodal social media video 
classification pipeline that made use of both textual and visual characteristics raised the accuracy 
of the classification to 88.0%, significantly higher than single modality neural networks like 
Google's InceptionV3, which on the same task22 achieved an accuracy of 76.4%. Leveraging 
fusion methodologies for medical imaging is primarily driven by the goal to incorporate 
supplementary contextual information and overcome the limitations of image-only models, 
which is why the performance increases for these efforts not only mirror the rationale in medical 
applications.  

Similar trends are seen in the most current work on medical imaging, where pixel and EHR 
data are combined in a "fusion-paradigm" to solve complicated problems that are difficult for 
one modality to handle alone. The terminologies and model architectures used in the new fusion 
paradigm encompass a broad spectrum of approaches and strategies that have not been 
thoroughly examined. This review study aims to define and compile pertinent terminology, 
provide an extensive analysis of deep learning models that utilize various modalities for medical 
imaging tasks, and provide an overview of the outcomes of state-of-the-art models in pertinent 
current literature. Our evaluation aims to provide insights for upcoming modeling frameworks 
and act as a guide for investigators exploring the use of multimodal fusion in medical imaging. 

This review aims to compile the body of knowledge from earlier research using multimodal 
deep learning fusion algorithms, which fuse clinical data with medical imaging. We provide 
standard language for multimodal fusion methods and group previous research according to 
fusion tactics. In general, we discovered that compared to conventional single modality models, 
multimodality fusion models produced higher accuracy (1.2–27.7%) and AUROC (0.02–0.16) 
for the identical task. But no single fusion approach produced the best results consistently in 
every category. It is advised to always experiment with fusion strategies when multimodal data is 
available, as our literature review demonstrates that more patient data and clinical context can 
lead to better model performance and that fusion methods better replicate the human expert 
interpretation workflow.  
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Reviewing deep learning fusion models, we found that they cover a wide range of medical 
applications, from hematology29 to radiology 31. Fusion techniques, for instance, were 
frequently used in the diagnosis and prognosis of Alzheimer's disease25,28,33,36,41. In clinical 
practice, diagnosing Alzheimer's disease requires more than just imaging or clinical evidence. 
Utilizing deep learning fusion techniques repeatedly demonstrated gains in performance for the 
diagnosis of Alzheimer's disease, despite the fact that histopathological correlation42 shows that 
doctors still have difficulty making accurate and trustworthy diagnoses even in the presence of 
multimodality. This demonstrates the value and practicality of multimodal fusion approaches in 
medical settings. 

Even in cases where single modality models have been extensively reported to achieve 
excellent performance, like pixel-based models for automated skin cancer diagnosis, fusion 
techniques have increased performance above single modality models in other, less sophisticated 
clinical applications43. The continuous improvement in reported performance across a wide 
range of clinical use cases, despite the vast variations in the fusion approach, implies that model 
performance based on single-modal data may not represent state of the art for a given application 
when multimodal data are not taken into account.  

In multimodal fusion studies, the complexity of the non-imaging data was constrained, 
especially when considering the availability of feature-rich and time-series data in the EHR. 
Rather, the majority of studies concentrated mainly on basic demographic data like age and 
gender25,27,39; a narrow range of categorical clinical history like smoking status or 
hypertension32,34; or disease-specific clinical features like APOE4 for Alzheimer's25,28,33,36; 
or PSA blood test for prostate cancer40. Even if it is important to choose traits that are known to 
be linked to disease, future research may profit even more by employing vast amounts of feature-
rich data, as is the case in domains other than medicine like autonomous driving44,45. 

3. Guidelines for implementing fusion models 

Early fusion was typically employed as an initial attempt at multimodal learning, which is a 
simple method that doesn't always require training multiple models. However, high-level 
imaging features need to be retrieved as a 1D vector before fusing with the 1D clinical data when 
the input modalities are not in the same dimensions, which is common when merging clinical 
data represented in 1D with imaging data in 2D or 3D. This was achieved through a range of 
techniques, such as the use of software-generated features or manually extracted imaging 
features25,32,33,34, 35. It is important to remember that the outputs from a CNN's linear layers 
are typically accurate feature representations of the original image, unless there is a strong case 
for doing otherwise28,29,31. This is due to the fact that learned feature representations 
frequently produce task-specific performance that is significantly higher than that of manually or 
artificially generated features46. This review supports early fusion as a starting point for fusing 
multimodal data, as it consistently outperformed single modality models based on the examined 
publications.  
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The same CNNs that are used to extract characteristics from imaging modalities can also be 
applied to joint fusion. However, neural networks are used to execute joint fusion, which might 
be a drawback, particularly for smaller datasets that are better suited for conventional machine 
learning models. Early or late fusion is preferred, for instance, if there are disproportionately few 
samples compared to the number of features in the dataset, or if some of the input features are 
sparsely represented, as these scenarios can be handled with more appropriate traditional 
machine learning algorithms (like Lasso and ElasticNet47).  

However, joint neural networks and early fusion neural networks can both acquire shared 
representations, which facilitates the model's ability to learn correlations across modalities and 
improves performance49. Additionally, research has demonstrated that combining less correlated 
information from deeper layers with highly correlated features from earlier layers enhances 
model performance50,51. Furthermore, we believe that joint fusion models can perform better 
than previous fusion strategies since the method simultaneously propagates the loss to all feature 
extracting models, updating its feature representations iteratively to better complement each 
modality. Although there isn't enough data to evaluate this effect on fusion for medical imaging 
yet, it's a crucial field for further research. 

It is preferable to use a late fusion technique when signals from various modalities do not 
complement one other, that is, when input modalities independently influence the final prediction 
and do not have inherent interdependency. This is mostly because high-dimensional vectors are 
produced when feature vectors from many modalities are concatenated, as in early and joint 
fusion. Unless a large number of input samples are available, machine learning models may find 
it challenging to learn without overfitting. In machine learning, this is known as the "curse of 
dimensionality"52,53. By using many models, each specialized on a single modality, late fusion 
reduces this issue by restricting the amount of the input feature vectors for each model. For 
instance, the pixel data from a brain MRI (e.g., Qiu et al.41) and the quantitative outcome of a 
Mini Mental State Examination are both essentially independent data, making them good 
candidates for input into late fusion models.  

4. Conclusion 

In an ideal world, single modality models would be constructed and refined initially in order 
to act as baselines and as inputs for fusion models. Multimodal fusion in medicine is a promising 
yet emerging topic that supports the clinical practice of medical imaging interpretation across all 
disciplines, according to this systematic review. In order to inform task- and modality-specific 
strategies, we have clarified and compiled important terminology, methods, and assessed the 
current state of multimodal fusion in medical imaging. New fusion techniques are anticipated as 
the field of multimodal fusion for deep learning in medical imaging continues to grow. Future 
research should concentrate on common language and metrics, and when appropriate, it should 
directly assess various multimodal fusion techniques. For automated medical imaging tasks, we 
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discovered that multimodal fusion generally outperforms single modality models in terms of 
performance. Future research may yield more insights that might guide the best course of action. 
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