# **Chelonian Conservation And Biology**



Vol. 19No.1 (2024) | <u>https://www.acgpublishing.com/</u> | ISSN - 1071-8443 DOI:doi.org/10.18011/2024.01(1). 957-969

# DETERMINATION OF WATER QUALITY PARAMETERS OF KELO RIVER

Reenu Mishra<sup>1</sup>

<sup>1</sup>K.G.Arts & Science College, Raigarh (C.G) reenu.mishra.ap@gmail.com

> P.K.Sing<sup>2</sup> <sup>2</sup>Govt. College Janjgir, (C.G)

**M.M.Vaishnav<sup>3</sup>** <sup>3</sup>Govt. Gramyabharati College, Hardibazar, Korba (C.G)

# Kavita Patel<sup>4</sup>

<sup>4</sup>OPJU, Raigarh (C.G)

## ABSTRACT

Water is a wonderful gift of nature to mankind. It has its own unique properties. It is also known as universal solvent. It is essential for all living beings. Chemically water is consisting of two part of hydrogen and one part of oxygen. Its weight is 18 .The natural water is combination of following –  $(1)H_2^{17}O$ ,  $(2) H_2^{18}O$  (3)HD<sup>16</sup>O (4) H<sub>2</sub><sup>16</sup>O (5)HD<sup>17</sup>O(6)HD<sup>18</sup>O (7) D<sub>2</sub><sup>18</sup>O(8) D<sub>2</sub><sup>17</sup>O(9) D<sub>2</sub><sup>16</sup>O. Because both hydrogen and oxygen have isotope, so there nine combinations is possible.<sup>1</sup> depending upon the combination of those component the properties of water vary from place to place. For example density of water varies from source to source at 4<sup>o</sup>C.

| Type of Water                                    | Density at 4°C |
|--------------------------------------------------|----------------|
| (1) Rain Water                                   | 0.9999990      |
| (2) Snow Water                                   | 0.9999977      |
| (3) Ocean Water                                  | 1.0000015      |
| (4) Water of crystallization in various minerals | 1.0000024      |
| (5) Water of plants                              | 1.0000017      |
| (6) River Water                                  | 1.0000000      |
|                                                  |                |

Water is used for several purposes. Without water life is impossible in universe. Water is found in three different forms-solid, liquid and vapors. Our planet is known as blue planet as most of the part is covered with water, but we still face crises, becoz 97% total surface water is marine water, only 3% of it is fresh water which includes glacier also. River is one of major source of surface water. River water can be used for different purpose like



AllthearticlespublishedbyChelonian Conservation and BiologyarelicensedunderaCreativeCommonsAttribution-NonCommercial4.0InternationalLicenseBasedonaworkathttps://www.acgpublishing.com/

CrossMark

drinking, irrigation, domestic use, in industry and many more. If we want to use water for any one of these purpose, we first check the water quality. Water quality is measured by various parameters. WQI is used for this purpose. On the basis of water quality parameters the degree of pollution is measured. It is also necessary to calculate parameters before using water at any purpose. In our present study we discuss the water quality parameters of Kelo River in Pree Monsoon, Monsoon & Post Monsoon. session. In present work I discuss some of them. In this study I choose kelo river water from seven different spots and analyze water quality parameters. Water is polluted by different reasons. Anthropogenic activity, Industrialization, Cultivation, Use of pesticide and fertilizers, Domestic waste, Sewage, irrigation, municipal waste etc. are responsible for aquatic pollution. Water quality parameters tell us whether the water is suitable for the purpose in which we want to use water. And it also tells us the level of pollution.

KEY WORD- Aquatic pollution, WQI, Anthropogenic activity, Water pollution, Kelo River, domestic waste, Raigarh,

#### INTRODUCTION

Kelo is life line of Raigarh. It is Mahanadi basin. Kelo, one of main tributary of Mahanadi, is about 95 km long and merge into Mahanadi.<sup>2</sup> It is used for several purposes. Several industries(small and large), steel plant, thermal power plant, Sponge Iron steel industries are situated in the bank of Kelo River. Some of them are as follows

Anjani Steel Ltd. Raigarh

Nalwa Steel & Power Ltd. Raigarh

Nav Durga Fuel Pvt. Ltd. (Srishtii TMT)

M/S Keshav Sponge & Energy Pvt. Ltd. Village- Taraimal, P.O. Gerwani

O.P.Jindal Industrial Park, Punjipathara

M/S Om Shree Rupesh Steel Pvt. Ltd. Village- Chiraipani near Gerwani

M/S Maa Sharda Steel pvt. Ltd. Village Gerwani

M/S Salasar Steel & Power Ltd., Gerwani

M/S Shri Shyam Ispat Pvt. Ltd. Village- Taraimal

M/S Singhal Energy Pvt. Ltd. Village Taraimal, P.O. -Gerwani, Distt. Raigarh

M/S Jindal Power Limited P.O. Tamnar, Distt. - Raigarh

M/S Jindal Steel & Power Ltd. Village- Punjipathra

Industrial effluents, domestic sewage, agricultural run-off, municipal carporation dump the waste water in Kelo River.

Kelo is life line of Raigarh. Kelo is one of the main tributary of Mahanadi. Its water is used for several purposes. In present study we collect water sample from eight different spot. And analyze the different water quality parameter. Various species of bacteria that are commonly found in nature are grouped as Total coli-form.<sup>3</sup> Animal discharge from leaching of animal manure, septic and sewage discharge , water run-off, waste of human

and domestic animals are sources of Coli forms.<sup>4</sup>Hardness is the measure of concentration of Ca<sup>++</sup> and Mg<sup>++</sup> in water.<sup>5</sup>Heavy metals are persistent , non-biodegradable, and bio-accumulate through food- chain, they did not decay with time, may be useful for plants and animals when present in small amount but can be harmful when exceeding specific threshold.<sup>6</sup>

# METHOD SAMPLE COLLECTION

Water sample is collected from five different spot and labeled. Water sample was collected in plastic bottle.

| S.No | SAMPLEING SPOT | SAMPLE NAME |
|------|----------------|-------------|
| 1    | CHAKRAPATH     | S-1         |
| 2    | CHATT-GHAT     | S-2         |
| 3    | RANIGHAT       | S-3         |
| 4    | KELO -DAM      | S-4         |
| 5    | LAKHA          | S-5         |
| 6    | CHIRAIPANI     | S-6         |
| 7    | TARAIMAL       | S-7         |
| 8    | GERWANI        | S-8         |
|      |                |             |

### **Table-1 Sampling Spot**

The analytical methods used for the determination water quality parameters are described by Trivedi and Goel (a), APHA (b) and Kodarkar et al. (c).

# INSTRUMENTAL METHODS FOR DETERMINATION OF WATER QUALITY PARAMETER

| S. No. | Name of Parameter | Method            |
|--------|-------------------|-------------------|
| 1      | Temperature       | Thermo-metrically |
| 2      | pH                | pHmetry           |
| 3      | EC                | Conductometry     |
| 4      | Turbidity         | Nephelometric     |

### **Table-2 Standard Methods**

959

960

| 5  |                       | Constitute at with     |
|----|-----------------------|------------------------|
| 5  | l otal solid          | Gravimetric            |
| 6  | Total dissolved solid | Do                     |
| 7  | TSS                   | Mathematical method    |
| 8  | Total alkalinity      | Volumetric             |
| 9  | Total Hardness        | Volumetric             |
| 11 | Fluoride              | Spectrophotometrically |
| 12 | Chloride              | Silver nitrate         |
| 13 | Fe                    | Instrumental           |
| 14 | NO3                   | By Spectrophotometer   |
| 15 | PO4                   | By Spectrophotometer   |
| 16 | SO4                   | By Spectrophotometer   |
| 17 | E. Coli               | By Spectrophotometer   |
| 18 | Totla Acidity         | Titration with base    |
| 19 | Zn                    | AAS                    |
| 20 | As                    | AAS                    |
| 21 | Pb                    | AAS                    |
| 22 | Fe                    | AAS                    |
| 23 | Hg                    | AAS                    |

Table-3 ACCEPTABLE LIMIT, PERMICIBLE LIMIT<sup>7,8</sup>

| S. NO. | PARAMETER             | UNIT    | ACCEPTABLE | PERMICIBLE |
|--------|-----------------------|---------|------------|------------|
|        |                       |         | LIMIT      | LIMIT      |
| 1      | Temperature           | 0C      |            |            |
| 2      | pН                    |         | 6.5-8.5    |            |
| 3      | EC                    | µmho/cm |            |            |
| 4      | Turbidity             | NTU     | 1          | 5          |
| 5      | Total solid           | mg/L    |            |            |
| 6      | Total dissolved solid | mg/L    | 500        | 2000       |
| 7      | TSS                   | mg/L    |            |            |
| 8      | Total Alkalinity      | mg/L    | 200        | 600        |
| 9      | Total Hardness        | mg/L    | 200        | 600        |
| 10     | Ca -Hardness          | mg/L    | 75         | 200        |
| 11     | Mg - Hardness         | mg/L    | 30         | 100        |
| 12     | Fluoride              | mg/L    | 1.0        | 1.5        |
| 13     | Chloride              | mg/L    | 250        | 1000       |
| 14     | NO <sub>3</sub> -     | mg/L    | 45         | 45         |
| 15     | SO4                   | mg/L    | 200        | 400        |
| 16     | PO4 <sup>3-</sup>     | mg/L    |            |            |
| 17     | Metallic elements-Fe  | mg/L    | 0.3        | 1          |

Chelonian Conservation and Biology<u>https://www.acgpublishing.com/</u> 961

#### THE POSITIVE EFFECT ON THE PLANT AND YIELD BY TREATING WHEAT SEEDS WITH SALT WATER

| 18 | Cd                | mg/L      |  |
|----|-------------------|-----------|--|
| 19 | As                | mg/L      |  |
| 20 | Hg                | mg/L      |  |
| 21 | Zn                | mg/L      |  |
| 22 | Total Coli forms  | CFU/100ml |  |
| 23 | Faecal Coli forms |           |  |

## **Table-4 Pree-Monsoon**

| S. | Parameter         | Chakr  | Rani | Chat  | Kelo | Lakh  | Chiraipa | Taraima | Gerwan |
|----|-------------------|--------|------|-------|------|-------|----------|---------|--------|
| Ν  |                   | a path | Gha  | t     | Dam  | a     | ni       | 1       | i      |
| 0  |                   |        | t    | Ghat  |      |       |          |         |        |
| 1  | Temperatur        | 38     | 37   | 37    | 39   | 39    | 39       | 36      | 36     |
|    | e                 |        |      |       |      |       |          |         |        |
| 2  | pН                | 8.04   | 7.4  | 7.66  | 7.68 | 7.73  | 7.88     | 7.90    | 7.68   |
| 3  | EC                | 410    | 402  | 422   | 402  | 1684  | 1538     | 872     | 480    |
| 4  | Turbidity         | 16.9   | 12.2 | 39.7  | 23.9 |       | 22.4     | 51.3    | 17     |
| 5  | Total solid       | 814    | 389  | 392   | 206  | 1234  | 230      | 140     | 145    |
| 6  | Total             | 254    | 254  | 272   | 106  | 1078  | 40       | 20      | 15     |
|    | dissolved         |        |      |       |      |       |          |         |        |
|    | solid             |        |      |       |      |       |          |         |        |
| 7  | TSS               | 560    | 135  | 120   | 100  | 156   | 190      | 120     | 130    |
| 8  | Total             | 117.29 | 47.7 | 52.77 | 46.5 | 117.2 | 88.90    | 43.50   | 30.40  |
|    | Alkalinity        |        | 1    |       | 4    | 9     |          |         |        |
| 9  | Total             | 55.83  | 53.4 | 59.29 | 58.5 | 52.45 | 39.66    | 101.988 | 89.68  |
|    | Hardness          |        | 1    |       | 8    |       |          |         |        |
| 10 | Ca -              | 33.9   | 30.0 | 31.5  | 32.3 | 30.23 | 27.74    | 36.2    | 63.94  |
|    | Hardness          |        | 5    |       | 6    |       |          |         |        |
| 11 | Mg -              | 21.93  | 23.3 | 24.79 | 26.2 | 22.22 | 11.92    | 65.78   | 25.74  |
|    | Hardness          |        | 6    |       | 2    |       |          |         |        |
| 12 | Fluoride          | 0.64   | 0.63 | 0.68  | 0.38 | 0.36  | 0.68     | 1.09    | 0.52   |
| 13 | Chloride          | 18.47  | 18.4 | 18.47 | 15.5 | 12.56 | 26.25    | 28.19   | 24.3   |
|    |                   |        | 7    |       | 6    |       |          |         |        |
| 14 | NO <sub>3</sub> - | 16.8   | 24.5 | 15.4  | 19.0 | 18.59 | 19.2     | 18.4    | 22.6   |
| 15 | SO4               | 104    | 124  | 116   | 134  | 112   | 19.9     | 0.52    | 1.09   |
| 16 | PO4 <sup>3-</sup> | 6      | 7.5  | 6.5   | 4.5  | 6.8   | 4.7      | 6.9     | 3.7    |
| 17 | Metallic          | 0.37   | 0.23 | 2.39  | 0.22 | 0.45  | 1.81     | 1.09    | 0.52   |
|    | elements-         |        |      |       |      |       |          |         |        |
|    | Fe                |        |      |       |      |       |          |         |        |

Chelonian Conservation and Biology<u>https://www.acgpublishing.com/</u> THE POSITIVE EFFECT ON THE PLANT AND YIELD BY TREATING WHEAT SEEDS WITH SALT WATER

| 18 | Cd          | 0.240 | 0.00 | 0.035 | 0.12 | 0.004 | 0.007 | 0.005 | 0.865 |
|----|-------------|-------|------|-------|------|-------|-------|-------|-------|
|    |             |       | 6    |       | 5    |       |       |       |       |
| 19 | As          | 0.40  | 1.12 | 0.72  | 1.86 | 0.47  | 2.27  | 2.82  | 1.87  |
|    |             |       | 5    |       | 5    |       |       |       |       |
| 20 | Hg          |       |      |       |      |       |       |       |       |
| 21 | Zn          | 0.001 | -bdl | bdl   | bdl  | bdl   | 0.001 | bdl   | 0.001 |
| 22 | Total Coli  | 35    | 20   | 0.0   | 22   | -     | 0.0   | 02    | 05    |
|    | forms       |       |      |       |      |       |       |       |       |
| 23 | Faecal Coli | 20    | 17   | 0.0   | 07   | -     | 0.0   | 0.0   | 02    |
|    | forms       |       |      |       |      |       |       |       |       |
| 24 | DO          | 3.5   | 5.2  | 2.8   | 3.8  | 3.4   | 3.4   | 4.2   | 3.1   |
| 25 | BOD         | 1.6   | 4.1  | 1.8   | 1.4  | 2.4   | 1.6   | 2.0   | 1.8   |
| 26 | COD         | 450   | 170  | 260   | 210  | 220   | 300   | 310   | 320   |

# **Table-5 Monsoon**

| S. | Parameter   | Chakr  | Rani  | Chatt | Kelo | Lakh  | Chiraipa | Taraim | Gerwa |
|----|-------------|--------|-------|-------|------|-------|----------|--------|-------|
| Ν  |             | a path | Ghat  | Ghat  | Dam  | a     | ni       | al     | ni    |
| 0  |             |        |       |       |      |       |          |        |       |
| 1  | Temperatur  | 28     | 28.4  | 28.6  | 29   | 29.5  | 30       | 30.5   | 28    |
|    | e           |        |       |       |      |       |          |        |       |
| 2  | pН          | 7.22   | 7.2   | 6.01  | 6.56 | 7.2   | 6.52     | 7.4    | 6.72  |
| 3  | EC          | 944    | 1278  | 1576  | 910  | 780   | 1676     | 980    | 106   |
| 4  | Turbidity   | 90     | 76    | 70    | 60.8 | 40.5  | 180      | 64.3   | 39    |
| 5  | Total solid | 1420   | 1178  | 1349  | 820  | 560   | 2266     | 970    | 599   |
| 6  | Total       | 670    | 828   | 949   | 570  | 320   | 966      | 450    | 69    |
|    | dissolved   |        |       |       |      |       |          |        |       |
|    | solid       |        |       |       |      |       |          |        |       |
| 7  | TSS         | 750    | 350   | 400   | 250  | 240   | 1300     | 520    | 530   |
| 8  | Total       | 22.64  | 32.93 | 12.35 | 18.5 | 13.56 | 12.35    | 20.56  | 20.58 |
|    | Alkalinity  |        |       |       | 2    |       |          |        |       |
| 9  | Total       | 73.44  | 106.0 | 446.7 | 63.2 | 67.45 | 85.67    | 107.45 | 89.76 |
|    | Hardness    |        | 8     | 6     | 4    |       |          |        |       |
| 10 | Ca -        | 14.72  | 31.07 | 49.06 | 11.4 | 23.14 | 9.81     | 57.34  | 13.08 |
|    | Hardness    |        |       |       | 5    |       |          |        |       |
| 11 | Mg -        | 9.11   | 7.08  | 80.44 | 8.6  | 44.11 | 15.17    | 50.11  | 14.16 |
|    | Hardness    |        |       |       |      |       |          |        |       |
| 12 | Fluoride    | 18.40  | 27.50 | 17.00 | 22.1 | 23.56 | 19.4     | 26.67  | 21.7  |
| 13 | Chloride    | 12.74  | 13.72 | 475.3 | 14.7 | 4.5   | 6.86     | 7.8    | 13.72 |

Chelonian Conservation and

962

Biologyhttps://www.acgpublishing.com/

| 963 |                   | THETOSTIVE | EFFECTON |       | TILLD DI I | KEATING WI | EAT SEEDS WITH SA | LI WATER |       |
|-----|-------------------|------------|----------|-------|------------|------------|-------------------|----------|-------|
| 14  | NO <sub>3</sub> - | 18.40      | 27.50    | 17.00 | 22.1       | 23.5       | 19.4              | 26.5     | 21.7  |
| 15  | SO4               | 108        | 127      | 122   | 130        | 126        | 28.7              | 118      | 125.2 |
| 16  | PO4 <sup>3-</sup> | 4.5        | 3.8      | 4.2   | 2.1        | 5.6        | 5.6               | 4.3      | 1.7   |
| 17  | Metalic           | 0.69       | 0.92     | 1.67  | 0.22       | 0.32       | 0.38              | 0.45     | 0.31  |
|     | elements-         |            |          |       |            |            |                   |          |       |
|     | Fe                |            |          |       |            |            |                   |          |       |
| 18  | Cd                | 0.141      | 0.002    | 0.025 | 0.10       | 0.001      | 0.006             | 0.002    | 0.728 |
|     |                   |            |          |       | 0          |            |                   |          |       |
| 19  | As                | 0.025      | 0.675    | 0.23  | bdl        | 0.005      | bdl               | 0.034    | 0.003 |
| 20  | Hg                | BDL        | BDL      | BDL   | BDL        | BDL        | BDL               | BDL      | BDL   |
| 21  | Zn                | BDL        | BDL      | BDL   | BDL        | BDL        | BDL               | BDL      | BDL   |
| 22  | Total Coli        | 46         | 28       | 20    | 12         | 37         | 18                | 14       | 17    |
|     | forms             |            |          |       |            |            |                   |          |       |
| 23  | Faecal Coli       | 23         | 18       | 06    | 04         | 07         | 10                | 03       | 09    |
|     | forms             |            |          |       |            |            |                   |          |       |
| 24  | DO                | 2.5        | 4.5      | 3.4   | 4.5        | 2.8        | 2.8               | 4.2      | 3.1   |
| 25  | BOD               | 1.2        | 4.5      | 2.1   | 1.6        | 2.2        | 2.1               | 2.5      | 2.2   |
| 26  | COD               | 520        | 250      | 340   | 256        | 258        | 360               | 360      | 370   |

NEITIVE FEFECT ON THE DI ANT AND VIELD DV TDEATING WHEAT SEEDS WITH SALT WATED

Table –6 Post- Monsoon

| S. | Parameter   | Chakr  | Rani  | Chatt  | Kelo  | Lakh  | Chiraipa | Taraim | Ger-  |
|----|-------------|--------|-------|--------|-------|-------|----------|--------|-------|
| Ν  |             | a path | Ghat  | Ghat   | Dam   | a     | ni       | al     | wani  |
| 0  |             |        |       |        |       |       |          |        |       |
| 1  | Temperatur  | 25     | 25.4  | 25.6   | 27    | 27.4  | 26       | 25     | 25    |
|    | e           |        |       |        |       |       |          |        |       |
| 2  | pН          | 7.9    | 8.3   | 8.92   | 8.0   | 8.1   | 7.8      | 7.9    | 7.8   |
| 3  | EC          | 944    | 1278  | 1576   | 910   | 780   | 1676     | 980    | 106   |
| 4  | Turbidity   | 80     | 65    | 60     | 50.5  | 30.5  | 150      | 44.3   | 29    |
| 5  | Total solid | 464.5  | 179.7 | 118.11 | 66.45 | 126.6 | 85.1     | 640    | 120.3 |
| 6  | Total       | 257.17 | 85.3  | 45.44  | 7.25  | 101.2 | 77.6     | 560    | 20.3  |
|    | dissolved   |        |       |        |       |       |          |        |       |
|    | solid       |        |       |        |       |       |          |        |       |
| 7  | TSS         | 139.75 | 54.4  | 147.5  | 38.5  | 75    | 82.5     | 80     | 100   |
| 8  | Total       | 156.42 | 61.74 | 32.9   | 34.79 | 73,39 | 47.14    | 47.14  | 57.67 |
|    | Alkalinity  |        | 5     |        | 5     |       |          |        |       |
| 9  | Total       | 707.37 | 67.23 | 54.312 | 83.48 | 200.0 | 99.1     | 400    | 365   |
|    | Hardness    | 8      |       |        | 5     | 1     |          |        |       |

Chelonian Conservation and Biology<u>https://www.acgpublishing.com/</u>

| 964 | 1                 | THE POSITIVE EF | FECT ON THE | E PLANT AND YI | ELD BY TREA | TING WHEAT | SEEDS WITH SALT W | ATER  |        |
|-----|-------------------|-----------------|-------------|----------------|-------------|------------|-------------------|-------|--------|
| 10  | Ca -              | 403.17          | 45.12       | 34.122         | 33.26       | 150.9      | 65.9              | 265   | 142    |
|     | Hardness          | 8               |             |                | 5           | 1          |                   |       |        |
| 11  | Mg -              | 304.20          | 22.11       | 20.19          | 50.22       | 49.1       | 33.2              | 135   | 223    |
|     | Hardness          | 0               |             |                | 0           |            |                   |       |        |
| 12  | Fluoride          | 0.425           | 0.395       | 4.45           | 0.615       | 0.57       | 0.235             | 0.61  | 0.67   |
| 13  | Chloride          | 130.43          | 20.56       | 15.63          | 230         | 10.97      | 131.27            | 240   | 253    |
| 14  | NO <sub>3</sub> - | 18.3            | 18.75       | 7.56           | 5.85        | 9.35       | 6.3               | 6.3   | 8.9    |
| 15  | SO4-              | 450             | 320         | 235            | 260         | 380        | 280               | 750   | 360    |
| 16  | PO4 <sup>3-</sup> | 5.3             | 4.1         | 5.2            | 4.1         | 7.3        | 6.4               | 5.3   | 2.1    |
| 17  | Metallic          | 0.5132          | 0.506       | 0.4482         | 0.341       | 0.34       | 0.5801            | 1.65  | 0.74   |
|     | elements-         |                 | 6           |                | 2           |            |                   |       |        |
|     | Fe                |                 |             |                |             |            |                   |       |        |
| 18  | Cd                | 0.9997          | 0.867       | 0.7960         | 0.713       | 0.342      | 0.654             | 0.342 | 0.9281 |
|     |                   |                 | 1           |                | 7           |            |                   |       |        |
| 19  | As                | 0.0227          | 0.677       | 0.2388         | 0.780       | 0.002      | 0.004             | 0.005 | 0.6310 |
|     |                   |                 | 4           |                | 0           |            |                   |       |        |
| 20  | Hg                | 0.001           | bdl         | Bdl            | bdl         | bdl        | bdl               | bdl   | bdl    |
| 21  | Zn                | 0.7767          | 0,829       | 0.7481         | 0.837       | bdl        | bdl               | bdl   | 0.7156 |
|     |                   |                 | 7           |                | 9           |            |                   |       |        |
| 22  | Total Coli        | 40              | 24          | 20             | 10          | 29         | 14                | 12    | 16     |
|     | forms             |                 |             |                |             |            |                   |       |        |
| 23  | Faecal Coli       | 26              | 17          | 08             | 02          | 09         | 08                | 04    | 05     |
|     | forms             |                 |             |                |             |            |                   |       |        |
| 24  | DO                | 2.8             | 4.8         | 3.2            | 4.2         | 3.2        | 1.8               | 2.3   | 2.0    |
| 25  | BOD               | 1.4             | 4.2         | 2.2            | 1.8         | 2.4        | 1.2               | 1.8   | 1.2    |
| 26  | COD               | 480             | 190         | 280            | 240         | 250        | 330               | 330   | 340    |



x-axis- Sampling spot, y- axis Concentration of Fe in mg/L.





x-axis- Sampling spot, y- axis Concentration of Cd in mg/L. Fig-2: Concentration of Cadmium in 8 sampling spot in mg/L



x-axis- Sampling spot, y- axis Concentration of As in mg/L

| Fig-3 : Concentration of As at 8 s | sampling spot i | n mg/L |
|------------------------------------|-----------------|--------|
|------------------------------------|-----------------|--------|



x-axis- Sampling spot, y- axis Concentration of Nitrate in mg/L.

Fig-4 Concentration of Nitrate at 8 sampling spot in mg/L

966



x-axis- Sampling spot, y- axis Concentration of Sulphate in mg/L. Fig-5 : Concentration of sulphate at 8 different spot in mg/L



x-axis- Sampling spot, y- axis Value of DO & BOD.



#### Fig- 6 : DO &BOD level at 8 different sample spot

x-axis- Sampling spot, y- axis Value of Total coli-form and Fecal coli- form.

Fig-7 :Total coli-form and Fecal-Coli form at 8 different sample spot

#### **Result and Discussion**

Physico-chemical parameters of five sampling spot summarized in tables. The observed value is compared with various standard values like- BIS, ICMR and WHO. The ph value is in between 7.5 to 8.9. The hardness value is high for sampling spot 7 Tarimal, indicates the presence of bivalent cations. The high value of alkalinity in spot 2 indicates the high concentration of anions. The iron concentration is high in sample spot 4. The presence of heavy metal indicates the hazardous situation. As concentration is high in sampling spot2,4 and8. High value of Cd is found in sampling spot1. The concentration of iron in every sampling spots indicates Fe bacteria may present .Presence of Coli form and fecal coli form indicates the present of diseases causing bacteria.

#### CONCLUSION

Water is a precious gift of nature. It's our duty to keep the water sources clean. The above study indicates the presence of pollution in Kelo river water. The effluents of industries located on the bank of river, domestic waste dump by municipal corporation and pollutant sources affects the value of water quality parameters. The presence of heavy metals like As, Cd and Hg in water can cause great threat. The low DO value indicates the presence of pollutant in river water. The presence of coli form indicates the presence of disease causing micro-organism. Sampling spot x shows the high concentration value of Arsenic in nature and can show hazardous health effects. The present study indicates the pollution level of Kelo

river water. So it is necessary to stop pollution level of river water and removal of heavy metals from river water.

#### REFERENCES

1. Water Pollution by V.P.Kudesia and Ritu Kudesia

Fourth Thoroughly Revised and Enlarged Edition 1998.

2. Brajesh K. Shrivastava and Masood Alam, "Nature Environment and Pollution Technology "Vol.6, PP- 609-613, 2007.

3. Metcafe and Eddy "Waste water Engineering, Treatment, Disposal Reuse" 'Tata McGraw – Hill, second edition 1979.

4. Divya, A.H., Solomon P.A.,"Procedia Technology" 24 (2016) 631-638, International conference on Emerging Trends in Engineering Science and Technology (ICETEST 2015)
5. P. Ramya, A. Jagadeesh Babu et al "A study of the study of hardness in ground water sample by EDTA tritrimetric method "International Journal of recent scientific research ,Vol.6,Issue6, pp.4504-4507,June 2015.

6. Suparna Kumar Das, Ajmer Singh Grewal, Mrityunjan Banerjee "A brief review; Heavy Metals and their analysis, volume 11, issue-1, November-December 2011, Article-003 a.Trivedi R. K. and Goel P K, Chemical and biological methods for water pollution Studies. (Environ media, Karad, Maharashtra, India)(1986).

7. APHA. AWWA, WPCF, Standard method for the examination of water and waste water, 19<sup>th</sup> Edn. American Public Health Association, Washington D.C.(1995).

8.Kodarkar et al, Methodology for water analysis .IAAB. Publ.2. Hyderabad (1998).

9.APHA Standard methods for the examination of water and wastewater. American Public Health Association, Washington, D.C.(1998).

10. BIS 1991, India Standard for drinking water specification IS 10500, Bureau of Indian Standard , New Delhi